
Implementing Aggressive Branch Prediction in
FabScalar

Rangeen Basu Roy Chowdhury, Daniel Howe
Electrical & Computer Engineering Department

North Carolina State University
rbasuro@ncsu.edu , dchowe@ncsu.edu

Abstract—When selecting a style of branch predictor to be
implemented in FabScalar [1] as an improvement on the existing
Bimodal predictor, it is necessary to consider many alternatives.
The quality of these alternatives must then be judged based on the
performance benefits they bring as well as the cost of gaining these
performance benefits. This paper aims to study several variations
on the Gshare style branch predictor to determine which would be
the most feasible to implement in FabScalar. It then goes on to
compare the new implementation against the old as well as
considering possible future work. The branch predictor ultimately
constructed is a Gshare style predictor that uses stale global history
information to allow for accurate multiple branch predictions per
cycle at a minimal hardware cost. Although the C++ simulation
results were encouraging, the performance of the RTL was not as
good.

branch predictor; bi-modal; gshare; FabScalar

I. INTRODUCTION

Today's microprocessor designs try to squeeze out as much
performance as possible while staying within power and area
budgets. One conceptually easy way to make processors faster is
to increase the frequency thus reducing the amount of time
required to complete a provided task. Processor pipelines have to
be made deeper and deeper to achieve this reduction in cycle
time. However, increasing the pipeline depth has a negative
impact on mis-prediction recovery as the number of cycles
between predicting a branch and resolution (execution) of a
branch increases. This leads to a reduced overall IPC and an
increased energy consumption since more and more speculative
work needs to be squashed as the pipeline depth increases.
Having a predictor with higher accuracy offsets these effects by
decreasing the number of mis-predictions and hence reduced
recovery penalty.

Prior to this point, FabScalar HDL model had a Bimodal
multi-branch predictor [2] that could predict 8 branches at a time.
The performance in terms of IPC and energy consumption was
not acceptable and owed to the inherent lack of accuracy of
Bimodal prediction. History based branch predictors have similar
hardware costs as Bimodal branch predictor but have
significantly higher prediction accuracy [11]. However, their
complexity increases when multiple predictions are required in
the same cycle. Techniques that can efficiently reduce this
complexity without an adverse effect on accuracy were explored

in this study. Higher prediction accuracy will allow a higher IPC
and a lower overall energy consumption. It will also allow high
bandwidth fetch mechanisms such as Trace Cache [6] and
Branch Address Caches [9], which rely on accurate branch
prediction to form traces of non-contiguous basic blocks, to be
much more effective.

In this project we investigate the accuracy of various
aggressive branch predictor styles and their effect on IPC. The
considered branch predictor designs are either direct
implementations from previous work or variations of them.
Based on the simulation results, an optimum design is chosen
and implemented as a synthesizable HDL model and integrated
into the existing FabScalar design. The design was synthesized
and a one to one comparison was made with the Bimodal
predictor to make sure that cycle time was not negatively
impacted.

The following section describes in detail the different styles
of history based branch predictor that were explored. Section II
also describes our methodology and presents exploration results
obtained through simulation. Section III explains our choice of
branch predictor style implemented in FabScalar RTL and
presents detailed micro-architecture and RTL simulation results.
Section IV presents some discussions and suggests future work.
Section V concludes the study.

A. Abbreviations

BHR – Branch History Table, PHT – Prediction History
Table (Counter Table), BPU – Branch Prediction Unit, PC –
Program Counter

II. DESIGN SPACE EXPLORATION

The main difficulty in designing a history based multi-branch
predictor is making the indexing style consistent for each branch
and for each instance of the same branch. Achieving this in a
bimodal predictor is fairly simple as it always uses the PC of a
branch to index into the PHT and hence uses the same index to
predict different instances of the same branch. In case of a
history based predictor, the history used to hash the PC of a
branch may be inconsistent between instances of the same
branch. This study examined a few probable hashing algorithm
that try to make the indexing consistent.

mailto:dchowe@ncsu.edu
mailto:rbasuro@ncsu.edu

A. Styles of Predictor

We explored the prediction potential of several styles and
variations of branch predictors. As a baseline standard, a 64K bi-
modal branch predictor is used. The different predictor styles
explored are briefly described here.

1) Standard Gshare - GS
This is a standard Gshare style predictor capable of predicting

multiple branches in a single fetch bundle based on a
speculatively updated global history register and the PC of each
branch instruction. This predictor XORs bits of the branch's PC
with the global history register to read into a PHT of 2-bit
saturating counters (Fig. 1).

Fig. 1. Standard Gshare - GS

2) Branch Sequence Gshare - BSGS
This is similar to GS except it additionally uses the order of

branches in the fetch bundle to index into a set of N PHTs. (i.e.
the first branch in the fetch bundle references the first PHT, the
second branch uses the second PHT, etc.) This style is
functionally similar to the first however, each prediction does not
reference the same PHT. This means that a branch at PC=X with
global history=Y may get a different prediction depending on its
location in the fetch bundle. This technique may be capable of
gathering some local history to make more accurate predictions
although this might require some decode information for the
instructions at the beginning of the lookup cycle. This multiple
PHTs are full sized PHTs (i.e. 64 K) and so would require N
times the area. This study was more of a control experiment than
a practical implementation. This is represented in Fig. 2.

Fig. 2. Branch Sequence Gshare - BSGS

3) First Branch Gshare - FBGS
This is a Gshare style predictor that predicts multiple

branches based only on the global history register and the PC of
the first branch in the fetch bundle. The global history is updated
speculatively after all predictions for the current bundle are
made. This predictor has a single PHT that contains four 2-bit
counters per entry. This predictor is modeled to account for
potential difficulties in implementing other Gshare style
predictors since it may not be possible to know the PC of later
branches in the fetch bundle immediately. This indexing style is
still consistent as it uses the PC of the first branch as opposed to
PC of the first instruction in the bundle and hence it is not
affected by fetch block misalignment i.e. fetch bundles spanning
across multiple cache lines. See Fig. 3 for the diagram .

Fig. 3. First Branch Gshare - FBGS

4) Global History Two Level Predictor - GAg
On the opposite spectrum, a global history based predictor

that relies only on the global history register to index into the
PHT [10] for making multiple predictions was also examined.
When considering this predictor style it seems likely to be
relegated to another baseline reference, where the standard bi-
modal predictor relies entirely on the addresses of branches this
style relies solely on global history (Fig. 4). Never the less, this
style was simulated to ensure that a fall-back implementation,
relying on this style, would still be a viable improvement over the
existing bi-modal implementation. This style is also one of the
most likely ones for use with a trace cache as the PCs of the
instructions in a trace are unknown due to them being in non
contiguous basic blocks.

Fig. 4. Global History Two Level Predictor - GAg

5) PC Set Gshare - PSGS
As an option which may improve accuracy by extracting

more locality information from the PC of branches, a Gshare
style predictor that also uses lower order PC bits to further index
into a set of PHTs is simulated. This style allows for simple and
also beneficial banking of a single PHT, though in simulation the
set of PHTs was not modeled as a single banked PHT but as full
sized individual PHTs which are indexed by lower order PC bits
and sub-indexed by XORing the global history with the branch
address to read the 2-bit counters. See Fig. 5 for a clearer
diagram.

Fig. 5. PC Set Gshare - PSGS

6) Stale History Gshare - SHGS
To account for the possibility of not being able to make

predictions and speculatively update the global history within a
single cycle, a Gshare style predictor which uses slightly stale
global history is considered. While making prediction for a
branch, this style always ignores the three most recent predictions
prior to the branch and uses rest of the BHR to hash the PC.
Though not as aggressive as possible, this model still gives a
good impression of the effects of limiting the global history when
making branch predictions. This style is referenced as SHP, Stale
History Predictor (Fig. 6).

B. Methodology

The simulator used for this project was a modification of a
C++ based pipeline simulator that using the SimpleScalar ISA.
This is a nearly cycle accurate, execution driven simulator; no
frequency is considered, and the simulator operates on an actual
dynamic instruction stream as opposed to a static trace previously
generated.

Five SPEC benchmarks namely gcc, gzip, parser, twolf, and
vortex were used for the different analysis runs. For each
benchmark, each style of predictor was simulated under several
conditions, however some of the properties were held constant
across all simulations. Benchmarks were limited to 100,000,000

Fig. 6. Stale History Gshare - SHGS

instructions after skipping the first 1,000,000,000 instructions to
ignore any initialization phase the benchmarks may go through.

To begin with, the benchmarks were simulated under heavily
idealized conditions: ideal instruction and data caches, very large
sized queue structures, oracle memory disambiguation, and large
widths (other than fetch and issue). Under these conditions the
fetch (and issue) width was varied from 4 to 32 to ensure
predictor accuracy as fetch width, and therefore a higher
likelihood of multiple branches in a single fetch bundle, increase.
Issue width was not held at a large value since instructions are
not issued until there are at least 'Issue width' instructions
queued, and for small fetch widths this would take multiple
cycles and degrade performance unnecessarily. The results from
these simulations allow the unadulterated effects of the branch
predictors to be measured since the only factor being modified is
the type of branch predictor.

Finally, to compare the predictor styles in the realistic settings
similar to FabScalar, results were also gathered for simulations
where none of the idealizations mentioned above were used.
This portion of the study also limited the fetch width to four
instructions.

In each of these simulations the accuracy of the predictor was
measured as percentage of conditional branches mis-predicted
out of the total number of conditional branches executed. This
metric is used to compare the quality of the predictors since this
value is fairly impervious to variations in the processor
architecture and idealizing assumptions; it depends more on the
properties of the workload. Also, as a more tangible metric of
comparison, the IPC for each simulation is also recorded. It
stands to reason that a predictor with an overall and generally
higher accuracy would correspond to a higher IPC, though
admittedly, seeing this correlation via measurement is reassuring.

C. Simulation Results

Fig. 7 shows the average accuracy of each predictor style
based on the benchmark being used. This number is the
arithmetic average of all five simulations' accuracy results, per

benchmark and per predictor style. The average was used since
variation across the benchmarks for a particular predictor style

Fig. 7. Prediction Accuracy

was minimal. These results show that gshare style predictors can
outperform a similarly sized bimodal in terms of the number of
predictions accurately made. It is perhaps surprising to note that
the GAg predictor is also more accurate than the bimodal for 4 of
the 5 benchmarks despite being the generally weakest of the
predictor styles that consider global history. It is noted that the
highest performing predictor style for all benchmarks is the
PSGS. This is likely because the PC information is doubly
utilized as it is both XORed with the BHR and used to select a
PHT set to index into.

Fig. 8. Normalized IPC for 4 Wide Fetch

Fig. 8 and Fig. 9 show the IPC, normalized with respect to
the bi-modal predictor, for the highly idealized simulations when
the fetch width is equal to 4 and to 8, respectively. These results

indicate how improved predictor accuracy yields improved
performance when predictor accuracy is the only limiting factor

Fig. 9. Normalized IPC for a 8 Wide Fetch

in an architectural design. Also shown is the comparative
improvement having 100% accurate branch prediction would
give for each benchmark. From these plots we can see how the
trends in IPC follow the trends in predictor accuracy.

Presented in Fig. 10 are the normalized IPCs for a more
realistic model. The results are similar to those from the
idealized models but the extent to which IPC is improved is

Fig. 10. Normalized IPC for a Constrained System

limited by various other constraints such as cache misses and
load violations.

As stated above, from these results it can be observed that for
all five benchmarks the Gshare style predictors have improved

accuracy over the baseline Bimodal predictor. Also, for all of the
benchmarks the predictor style with the greatest accuracy is the
PSGS style since it maximizes the use of branch location
information as well as utilizing the global history.

III. HDL IMPLEMENTATION

As discussed in the previous section, the PSGS has the best
performance in terms or accuracy and consequently IPC.
However, looking at the hardware complexity (Fig. 5) it is
apparent that this design will have a negative impact on cycle
time due to higher memory access latency caused by the larger
number of read ports. This style also requires multiple, full sized
PHTs while giving only marginal improvements over the other
Gshare styles. Similarly the additional area required to
implement the BSGS and FBGS styles limits their practicality.
The standard GS style would seem like an ideal choice however
the additional read and write ports to enable multiple predictions
is a high cost. Likewise, the GAg predictor requires similar
porting into the PHT to achieve multiple predictions per cycle.

This leaves the SHGS style which can be implemented using
a single PHT with only one read and one write port per desired
prediction. If banked, this gives several small memories with
only a single read port and a single write port per bank. Since
this style was consistently better than a similarly sized bi-modal
predictor, the prediction accuracy was not significantly lower
than other Gshare style predictors, and because the hardware
costs of implementation were minimized, it was decided to
implement this style of branch predictor.

Fig. 11. Gshare Predictor Micro-architecture

A. Predicting multiple branches

The predictor considers each instruction in the fetch bundle
as a branch as it does not have the decode information for the
instructions. For a 4-wide fetch, the hashing logic generates four
different hashes using the PC of the instruction and a slightly
stale BHR. Lower 2 bits of the PC, after discarding the lowest 3
bits (instruction byte offsets) are used to select the PHT bank
from which the counter is read. The next (log2K-2) bits of the
PC, where K is the total PHT size, are XORed with appropriate
part of the BHR, after skipping three most recent history, to
generate an index for each instruction. The indexes are aligned
with the appropriate bank by rotating them. The counters read
out are rotated back to be aligned with the actual fetch bundle
and these counters are used to make the predictions. The index
for each instruction is sent to Fetch Stage 2 where they are stored
in the CTI queue to be used later while updating the PHT.

B. Updating the BHR

FabScalar has a two stage fetch where the first fetch stage
generates a speculative next PC to fetch from the I-Cache. This
calculation is based on information from the BTB and
predictions made by the branch predictor. The second stage
validates the PC calculated in stage 1 using decode information
from a control pre-decoder and the predictions from the branch
predictor.

The position of the branches in the raw fetch bundle in stage
1 are not known until Fetch Stage 2 and so the BHR can not be
updated with the predictions made until the next cycle. The
decode information from Fetch stage 2 is used to speculatively

update the BHR with predictions of only the conditional
branches.

C. Updating the PHT

The pattern history table is updated when a branch retires and
its actual outcome is known. The CTI queue provides the index
and bank of the pattern history table to be updated. The update
process is also pipelined. The current value of the counter is first
read out from the required index and bank. This is then updated
based on the branch outcome and written into the correct bank of
the PHT in the next cycle. This makes sure the PHT is
consistently updated while meeting cycle time requirements.

D. RTL Simulation Results

Six benchmarks from the SPECINT suite namely, bzip, gzip,
gap, mcf, parser and vortex were used for evaluating the design
in FabScalar. Fig. 13(a) presents accuracy of the Gshare
predictor. As can be seen it performs quite well for three out of
the six benchmarks and is slightly worse for the other three
benchmarks. Fig. 13(b) shows the IPCs obtained for the design
using Gshare normalized with respect to the design using bi-
modal. The configuration of the processor pipeline used for RTL
simulations is given in Table I.

TABLE I. CORE CONFIGURATION OF FABSCALAR

Parameter Configuration

Fetch Width 4

Dispatch Width 4

Issue Width 4

Commit Width 4

Active List 128

Physical Register File 96

Issue Queue 32

Load/Store Queue 32

CTI Queue 16

Branch Predictor Table 64 K Entries

Branch Target Buffer 512 K Entries

Load/Store Lane 1

Control Execution Lane 1

Simple Lane 1

Complex Lane 1

Fig. 12. PHT Update Micro-architecture

Fig. 13. (a) Predictor Accuracy (b) IPC Achieved

IV. DISCUSSIONS

A. Mismatch Between C++ and RTL Results

C++ simulation study showed improvements in most
benchmarks when using the Gshare but similar improvements
were not seen with the RTL. One striking difference that the C++
simulator has compared to the RTL is the availability of decode
information and so it knows which instruction in a fetch bundle
are branches and only makes predictions for those instructions.
In case of the RTL, the decode information is not available and
hence the history bits used to hash the PC may not be very
consistent from one instance of a branch to the next. This can
lead to significant inaccuracies for some cases and indeed that
might be the case for the benchmarks that do not show much
improvement over bi-modal.

B. Limitations of the study

The pipeline in the simulator was not modeled exactly
as the RTL and hence might give optimistic results for some of
the benchmarks. The RTL also assumes perfect I-Cache and D-
Cache and the benefits of having a branch predictor with higher
accuracy are not as pronounced as having realistic caches. In
case of realistic caches, cache misses feeding mis-predictions
[CFD Paper] can have significant impact on the IPC.

C. Future Work

• The Gshare branch predictor can be pipelined. This will
allow the use of a much larger PHT without impacting the
cycle time. Block ahead prediction is an option that can
be explored [7][8].

• A hybrid branch predictor style [5] can be implemented
leveraging the existing Bimodal predictor and the Gshare
predictor. This is in fact quite common in most high
performance processor as none of the two perform better
than the other for all available workloads.

• The I-Cache can be augmented with a small predecode
cache or some sort of a decode predictor table [4] that can
quickly provide only relevant decode information to the
branch predictor so that the hashing algorithm can be
more consistent.

V. CONCLUSION

This paper has presented the results of a study into a variety
of Gshare style branch predictors considering the improvement
in accuracy over the Bimodal style of predictor as well as
performance trade offs between the various styles themselves. It
has been shown that a PC set Gshare style predictor can make

branch predictions with a higher degree of accuracy than other
Gshare style predictors as well as outperforming Bimodal
prediction. The results gathered also demonstrated the correlation
between increasing predictor accuracy and increasing IPC.
Considering the results of this branch prediction study and
practical physical implementation costs, a specific branch
predictor style was selected to be implemented in the FabScalar
RTL. This implementation showed improvement over the
existing Bimodal predictor for several benchmarks tested. Finally
this paper has proposed further work which can potentially
improve the performance and functionality of FabScalar.

REFERENCES

[1] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B.
H. Dwiel, S. Navada, H. H. Najaf-abadi and E. Rotenberg. FabScalar:
Automating superscalar core design. Micro, IEEE 32(3), pp. 48-59. 2012.

[2] J. Gandhi 1987-. FabFetch electronic resource] : A synthesizable RTL
model of a pipelined instruction fetch unit for superscalar processors. 2010.
Available: http://www2.lib.ncsu.edu/catalog/record/NCSU2282189; Get an
online version (NCSU only)
(http://www.lib.ncsu.edu/resolver/1840.16/6114).

[3] E. Hao, Po-Yung Chang and Y. N. Patt. The effect of speculative updating
branch history on branch prediction accuracy, revisited. Presented at
Microarchitecture, 1994. MICRO-27. Proceedings of the 27th Annual
International Symposium on. 1994, .

[4] D. A. Jimenez. Reconsidering complex branch predictors. Presented at
High-Performance Computer Architecture, 2003. HPCA-9 2003.
Proceedings. the Ninth International Symposium on. 2003, .

[5] Po-Yung Chang, E. Hao and Y. N. Patt. Alternative implementations of
hybrid branch predictors. Presented at Microarchitecture, 1995.
Proceedings of the 28th Annual International Symposium on. 1995, .

[6] E. Rotenberg, S. Bennett and J. E. Smith. Trace cache: A low latency
approach to high bandwidth instruction fetching. Presented at
Microarchitecture, 1996. MICRO-29. Proceedings of the 29th Annual
IEEE/ACM International Symposium on. 1996, .

[7] A. Seznec and A. Fraboulet. Effective ahead pipelining of instruction block
address generation. Presented at Proceedings of the 30th Annual
International Symposium on Computer Architecture. 2003, Available:
http://doi.acm.org/10.1145/859618.859646.

[8] A. Seznec, S. Jourdan, P. Sainrat and P. Michaud. Multiple-block ahead
branch predictors. SIGPLAN Not. 31(9), pp. 116-127. 1996. Available:
http://doi.acm.org/10.1145/248209.237169.

[9] T. Yeh, D. T. Marr and Y. N. Patt. Increasing the instruction fetch rate via
multiple branch prediction and a branch address cache. Presented at
Proceedings of the 7th International Conference on Supercomputing. 1993,
Available: http://doi.acm.org/10.1145/165939.165956.

[10] T. Yeh and Y. N. Patt. Two-level adaptive training branch prediction.
Presented at Proceedings of the 24th Annual International Symposium on
Microarchitecture. 1991, Available:
http://doi.acm.org/10.1145/123465.123475.

[11] Scott McFarling. Combining Branch Predictors, HP Labs Tech Report
1993, Available: http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-
TN-36.pdf

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
http://doi.acm.org/10.1145/123465.123475

Appendix I

Division of Labor

Rangeen Basu Roy Chowdhury Daniel Howe

Tasks :
• Literature survey
• Deciding predictor styles
• RTL coding and verification
• RTL Simulation and obtaining results
• Trial synthesis run

Paper:
• Wrote the introduction, HDL and Discussions parts.
• Did the detailed microarchitecture diagrams.
• Did final merging and formatting of paper, final edit and

bibliography

Contribution Factor: 1

Tasks:
• Literature survey
• Deciding predictor styles
• Modeling the styles in C++ simulator
• Simulation and consolidating results

Paper:
• Wrote abstract, C++ Simulation and conclusion parts
• Diagrams of the different styles
• Graphs for the simulation results

Contribution Factor: 1

	I. introduction
	A. Abbreviations

	II. design space exploration
	A. Styles of Predictor
	1) Standard Gshare - GS
	2) Branch Sequence Gshare - BSGS
	3) First Branch Gshare - FBGS
	4) Global History Two Level Predictor - GAg
	5) PC Set Gshare - PSGS
	6) Stale History Gshare - SHGS

	B. Methodology
	C. Simulation Results

	III. hdl implementation
	A. Predicting multiple branches
	B. Updating the BHR
	C. Updating the PHT
	D. RTL Simulation Results

	IV. discussions
	A. Mismatch Between C++ and RTL Results
	B. Limitations of the study
	C. Future Work

	V. conclusion

