
Implementing Aggressive Branch Prediction in 
FabScalar

Rangeen Basu Roy Chowdhury,  Daniel Howe
Electrical & Computer Engineering Department

North Carolina State University
rbasuro@ncsu.edu , dchowe@ncsu.edu

Abstract—When selecting  a  style  of  branch  predictor  to  be 
implemented in FabScalar  [1] as an improvement on the existing 
Bimodal  predictor,  it  is  necessary to consider many alternatives. 
The quality of these alternatives must then be judged based on the 
performance benefits they bring as well as the cost of gaining these 
performance benefits. This paper aims to study several variations 
on the Gshare style branch predictor to determine which would be 
the most feasible to implement in FabScalar.   It  then goes on to 
compare  the  new  implementation  against  the  old  as  well  as 
considering possible future work. The branch predictor ultimately 
constructed is a Gshare style predictor that uses stale global history 
information to allow for accurate multiple branch predictions per 
cycle at a minimal hardware cost. Although the   C++ simulation 
results were encouraging, the performance of the RTL was not as 
good.
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I.  INTRODUCTION

Today's microprocessor designs try to squeeze out as much 
performance as  possible  while  staying  within  power  and  area 
budgets. One conceptually easy way to make processors faster is 
to  increase  the  frequency  thus  reducing  the  amount  of  time 
required to complete a provided task. Processor pipelines have to 
be made deeper and deeper to achieve  this reduction in cycle 
time.  However,  increasing  the  pipeline  depth  has  a  negative 
impact  on  mis-prediction  recovery  as  the  number  of  cycles 
between   predicting  a  branch  and  resolution  (execution)  of  a 
branch increases.  This leads to a reduced  overall IPC and an 
increased energy consumption since more and more speculative 
work  needs  to  be  squashed  as  the  pipeline  depth  increases. 
Having a predictor with higher accuracy offsets these effects by 
decreasing  the  number  of  mis-predictions  and  hence  reduced 
recovery penalty.

Prior  to  this  point,  FabScalar  HDL model  had  a  Bimodal 
multi-branch predictor [2] that could predict 8 branches at a time. 
The performance in terms of IPC and energy consumption was 
not  acceptable  and  owed  to  the  inherent  lack  of  accuracy  of 
Bimodal prediction. History based branch predictors have similar 
hardware  costs  as  Bimodal  branch  predictor  but  have 
significantly  higher  prediction  accuracy  [11].  However,  their 
complexity increases when multiple predictions are required in 
the  same  cycle.  Techniques  that  can  efficiently  reduce  this 
complexity without an adverse effect on accuracy were explored 

in this study. Higher prediction accuracy will allow a higher IPC 
and a lower overall energy consumption. It will also allow high 
bandwidth  fetch  mechanisms  such  as  Trace  Cache  [6]  and 
Branch  Address  Caches  [9],  which  rely  on  accurate  branch 
prediction to form traces of non-contiguous basic blocks, to be 
much more effective.

In  this  project  we  investigate  the  accuracy  of  various 
aggressive branch predictor styles and their effect on IPC. The 
considered  branch  predictor  designs  are  either  direct 
implementations  from  previous  work  or  variations  of  them. 
Based on the simulation results,  an optimum design is chosen 
and implemented as a synthesizable HDL model and integrated 
into the existing FabScalar design. The design was synthesized 
and  a  one  to  one  comparison  was  made  with  the  Bimodal 
predictor  to  make  sure  that  cycle  time  was  not  negatively 
impacted. 

The following section describes in detail the different styles 
of history based branch predictor that were explored. Section II 
also describes our methodology and presents exploration results 
obtained through simulation. Section III explains our choice of 
branch  predictor  style  implemented  in  FabScalar  RTL  and 
presents detailed micro-architecture and RTL simulation  results. 
Section IV presents some discussions and suggests future work. 
Section V concludes the study.

A. Abbreviations

BHR  –  Branch  History  Table,  PHT  –  Prediction  History 
Table  (Counter  Table),  BPU  –  Branch  Prediction  Unit,  PC  – 
Program Counter

II. DESIGN SPACE EXPLORATION

The main difficulty in designing a history based multi-branch 
predictor is making the indexing style consistent for each branch 
and for each instance of the same branch. Achieving this in a 
bimodal predictor is fairly simple as it always uses the PC of a 
branch to index into the PHT and hence uses the same index to 
predict different instances of the same branch. In case of a 
history based predictor, the history used to hash the PC of a 
branch may be inconsistent between instances of the same 
branch. This study examined a few probable hashing algorithm 
that try to make the indexing consistent.
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A. Styles of Predictor

We explored  the  prediction  potential  of  several  styles  and 
variations of branch predictors.  As a baseline standard, a 64K bi-
modal branch predictor is used.  The different  predictor styles 
explored are briefly described here.

1) Standard Gshare - GS
This is a standard Gshare style predictor capable of predicting 

multiple  branches  in  a  single  fetch  bundle  based  on  a 
speculatively updated global history register and the PC of each 
branch instruction.  This predictor XORs bits of the branch's PC 
with  the  global  history  register  to  read  into  a  PHT  of  2-bit 
saturating counters (Fig. 1).

Fig. 1.  Standard Gshare - GS

2) Branch Sequence Gshare - BSGS
This is similar to GS except it additionally uses the order of 

branches in the fetch bundle to index into a set of N PHTs. (i.e. 
the first branch in the fetch bundle references the first PHT, the 
second  branch  uses  the  second  PHT,  etc.)   This  style  is 
functionally similar to the first however, each prediction does not 
reference the same PHT.  This means that a branch at PC=X with 
global history=Y may get a different prediction depending on its 
location in the fetch bundle.  This technique may be capable of 
gathering some local history to make more accurate predictions 
although  this  might  require  some  decode  information  for  the 
instructions at the beginning of the lookup cycle. This multiple 
PHTs are full sized PHTs (i.e. 64 K) and so would require  N 
times the area. This study was more of a control experiment than 
a practical implementation. This is represented in Fig. 2.

Fig. 2.  Branch Sequence Gshare - BSGS

3) First Branch Gshare - FBGS
This  is  a  Gshare  style  predictor  that  predicts  multiple 

branches based only on the global history register and the PC of 
the first branch in the fetch bundle.  The global history is updated 
speculatively  after  all  predictions  for  the  current  bundle  are 
made.  This predictor has a single PHT that contains four 2-bit 
counters  per  entry.   This  predictor  is  modeled  to  account  for 
potential  difficulties  in  implementing  other  Gshare  style 
predictors since it may not be possible to know the PC of later 
branches in the fetch bundle immediately. This indexing style is 
still consistent as it uses the PC of the first branch as opposed to 
PC  of  the  first  instruction  in  the  bundle  and  hence  it  is  not 
affected by fetch block misalignment i.e. fetch bundles spanning 
across multiple cache lines.  See Fig. 3 for the diagram .

Fig. 3.  First Branch Gshare - FBGS

4) Global History Two Level Predictor - GAg
On the opposite spectrum, a global history based predictor 

that relies only on the global history register to index into the 
PHT [10] for  making multiple predictions was also examined. 
When  considering  this  predictor  style  it  seems  likely  to  be 
relegated to another baseline reference,  where the standard bi-
modal predictor relies entirely on the addresses of branches this 
style relies solely on global history (Fig. 4).  Never the less, this 
style was simulated to ensure that  a  fall-back implementation, 
relying on this style, would still be a viable improvement over the 
existing bi-modal implementation.  This style is also one of the 
most likely ones for use with a trace cache as the PCs of the 
instructions in a trace are unknown due to them being in non 
contiguous basic blocks.

Fig. 4.  Global History Two Level Predictor - GAg



5) PC Set Gshare - PSGS
As an  option  which  may  improve  accuracy  by  extracting 

more  locality  information  from the  PC of branches,  a  Gshare 
style predictor that also uses lower order PC bits to further index 
into a set of PHTs is simulated.  This style allows for simple and 
also beneficial banking of a single PHT, though in simulation the 
set of PHTs was not modeled as a single banked PHT but as full 
sized individual PHTs which are indexed by lower order PC bits 
and sub-indexed by XORing the global history with the branch 
address  to  read  the  2-bit  counters.   See  Fig.  5  for  a  clearer 
diagram.

Fig. 5.  PC Set Gshare - PSGS

6) Stale History Gshare - SHGS
To  account  for  the  possibility  of  not  being  able  to  make 

predictions  and speculatively update the global history within a 
single cycle, a Gshare style predictor which uses slightly stale 
global  history  is  considered.  While  making  prediction  for  a 
branch, this style always ignores the three most recent predictions 
prior to the branch and uses rest  of the BHR to hash the PC. 
Though not  as aggressive as possible,  this  model  still  gives  a 
good impression of the effects of limiting the global history when 
making branch predictions. This style is referenced as SHP, Stale 
History Predictor (Fig. 6).

B. Methodology

The simulator used for this project was a modification of a 
C++ based pipeline simulator that using the SimpleScalar ISA. 
This is a nearly cycle accurate, execution driven simulator; no 
frequency is considered, and the simulator operates on an actual 
dynamic instruction stream as opposed to a static trace previously 
generated.

Five SPEC benchmarks namely  gcc, gzip, parser, twolf, and 
vortex  were  used  for  the  different  analysis  runs.  For  each 
benchmark, each style of predictor was simulated under several 
conditions, however some of the properties were held constant 
across all simulations. Benchmarks were limited to 100,000,000

Fig. 6.  Stale History Gshare - SHGS

instructions after skipping the first 1,000,000,000 instructions to 
ignore any initialization phase the benchmarks may go through.

To begin with, the benchmarks were simulated under heavily 
idealized conditions:  ideal instruction and data caches, very large 
sized queue structures, oracle memory disambiguation, and large 
widths (other than fetch and issue).  Under these conditions the 
fetch  (and  issue)  width  was  varied  from  4  to  32  to  ensure 
predictor  accuracy  as  fetch  width,  and  therefore  a  higher 
likelihood of multiple branches in a single fetch bundle, increase. 
Issue width was not held at a large value since instructions are 
not  issued  until  there  are  at  least  'Issue  width'  instructions 
queued,  and  for  small  fetch  widths  this  would  take  multiple 
cycles and degrade performance unnecessarily.  The results from 
these simulations allow the unadulterated effects of the branch 
predictors to be measured since the only factor being modified is 
the type of branch predictor.

Finally, to compare the predictor styles in the realistic settings 
similar to FabScalar, results were also gathered for simulations 
where  none  of  the  idealizations  mentioned  above  were  used. 
This  portion of  the  study also limited the fetch width to  four 
instructions.

In each of these simulations the accuracy of the predictor was 
measured  as  percentage  of  conditional  branches  mis-predicted 
out of the total number of conditional branches executed. This 
metric is used to compare the quality of the predictors since this 
value  is  fairly  impervious  to  variations  in  the  processor 
architecture and idealizing assumptions; it depends more on the 
properties of the workload.  Also, as a more tangible metric of 
comparison,  the  IPC for  each simulation is  also  recorded.   It 
stands to reason that a predictor with an overall and generally 
higher  accuracy  would  correspond  to  a  higher  IPC,  though 
admittedly, seeing this correlation via measurement is reassuring.

C. Simulation Results

Fig.  7  shows the  average  accuracy of  each  predictor  style 
based  on  the  benchmark  being  used.   This  number  is  the 
arithmetic average of all five simulations' accuracy results, per 



benchmark and per predictor style.  The average was used since 
variation  across  the  benchmarks  for a  particular predictor style 

Fig. 7.  Prediction Accuracy

was minimal.  These results show that gshare style predictors can 
outperform a similarly sized bimodal in terms of the number of 
predictions accurately made.  It is perhaps surprising to note that 
the GAg predictor is also more accurate than the bimodal for 4 of 
the  5  benchmarks  despite  being  the  generally  weakest  of  the 
predictor styles that consider global history.  It is noted that the 
highest  performing  predictor  style  for  all  benchmarks  is  the 
PSGS.   This  is  likely  because  the  PC  information  is  doubly 
utilized as it is both XORed with the BHR and used to select a 
PHT set to index into.

Fig. 8.  Normalized IPC for 4 Wide Fetch

Fig. 8 and Fig. 9 show the IPC,  normalized with respect to 
the bi-modal predictor, for the highly idealized simulations when 
the fetch width is equal to 4 and to 8, respectively.  These results 

indicate  how  improved  predictor  accuracy  yields  improved 
performance when  predictor  accuracy  is the only limiting factor 

Fig. 9.  Normalized IPC for a 8 Wide Fetch

in  an  architectural  design.   Also  shown  is  the  comparative 
improvement   having   100%  accurate  branch  prediction would 
give for each benchmark.  From these plots we can see how the 
trends in IPC follow the trends in predictor accuracy.

Presented  in  Fig.  10  are  the  normalized  IPCs  for  a  more 
realistic  model.   The  results  are  similar  to  those  from  the 
idealized models but the extent to which IPC is improved is 

Fig. 10.  Normalized IPC for a Constrained System

limited by various other  constraints such as  cache misses  and 
load violations.

As stated above, from these results it can be observed that for 
all five benchmarks the Gshare style predictors have improved 



accuracy over the baseline Bimodal predictor.  Also, for all of the 
benchmarks the predictor style with the greatest accuracy is the 
PSGS  style  since  it  maximizes  the  use  of  branch  location 
information as well as utilizing the global history.

III. HDL IMPLEMENTATION 

As discussed in the previous section, the PSGS has the best 
performance in terms or accuracy and consequently IPC. 
However, looking at the hardware complexity (Fig.  5) it is 
apparent that this design will have a negative impact on cycle 
time due to higher memory access latency caused by the larger 
number of read ports.  This style also requires multiple, full sized 
PHTs while giving only marginal improvements over the other 
Gshare styles.  Similarly the additional area required to 
implement the BSGS and FBGS styles limits their practicality. 
The standard GS style would seem like an ideal choice however 
the additional read and write ports to enable multiple predictions 
is a high cost.  Likewise, the GAg predictor requires similar 
porting into the PHT to achieve multiple predictions per cycle.

This leaves the SHGS style which can be implemented using 
a single PHT with only one read and one write port per desired 
prediction.  If banked, this gives several small memories with 
only a single read port and a single write port per bank.  Since 
this style was consistently better than a similarly sized bi-modal 
predictor, the prediction accuracy was  not significantly lower 
than other Gshare style predictors, and because the hardware 
costs of implementation were minimized, it was decided to 
implement this style of branch predictor.

Fig. 11.   Gshare Predictor Micro-architecture

A. Predicting multiple branches

The predictor considers each instruction in the fetch bundle 
as a branch as it does not have the decode information for the 
instructions. For a 4-wide fetch, the hashing logic generates four 
different hashes using the PC of the instruction and a slightly 
stale BHR. Lower 2 bits of the PC, after discarding the lowest 3 
bits (instruction byte offsets) are used to select the PHT bank 
from which the counter is read. The next (log2K-2) bits of the 
PC, where K is the total PHT size, are XORed with appropriate 
part of the BHR, after skipping three most recent history, to 
generate an index for each instruction. The indexes are aligned 
with the appropriate bank by rotating them. The counters read 
out  are rotated back to be aligned with the actual fetch bundle 
and these counters are used to make the predictions. The index 
for each instruction is sent to Fetch Stage 2 where they are stored 
in the CTI queue to be used later while updating the PHT.

B. Updating the BHR

FabScalar has a two stage fetch where the first fetch stage 
generates a speculative next PC to fetch from the I-Cache. This 
calculation is based on information from the BTB and 
predictions made by the branch predictor. The second stage 
validates the PC calculated  in stage 1 using  decode  information 
from a control pre-decoder and the predictions from the branch 
predictor.

The position of the branches in the raw fetch bundle in stage 
1 are not known until Fetch Stage 2 and so the BHR can not be 
updated with the predictions made until the next cycle. The 
decode information from Fetch stage 2 is used to speculatively 



update the BHR with predictions of only the conditional 
branches.

C. Updating the PHT

The pattern history table is updated when a branch retires and 
its actual outcome is known. The CTI queue provides the index 
and bank of the pattern history table to be updated. The update 
process is also pipelined. The  current value of the counter is first 
read out from the required index and bank. This is then updated 
based on the branch outcome and written into the correct bank of 
the PHT in the next cycle. This makes sure the PHT is 
consistently updated while meeting cycle time requirements.

D. RTL Simulation Results

Six benchmarks from the SPECINT suite namely, bzip, gzip, 
gap, mcf, parser and vortex were used for evaluating the design 
in FabScalar. Fig.  13(a)  presents accuracy of the Gshare 
predictor. As can be seen it performs quite well for three out of 
the six benchmarks and is slightly  worse  for  the  other  three 
benchmarks. Fig. 13(b) shows the IPCs obtained for the design 
using Gshare normalized with respect to the design using bi-
modal. The configuration of the processor pipeline used for RTL 
simulations is given in Table I.

TABLE I. CORE  CONFIGURATION   OF  FABSCALAR

Parameter Configuration

Fetch Width 4

Dispatch Width 4

Issue Width 4

Commit Width 4

Active List 128

Physical Register File 96

Issue Queue 32

Load/Store Queue 32

CTI Queue 16

Branch Predictor Table 64 K Entries

Branch Target Buffer 512 K Entries

Load/Store Lane 1

Control Execution Lane 1

Simple Lane 1

Complex Lane 1

Fig. 12.  PHT  Update Micro-architecture

Fig. 13.  (a) Predictor Accuracy  (b)  IPC Achieved



IV. DISCUSSIONS

A. Mismatch Between C++ and RTL Results

C++ simulation study showed improvements in most 
benchmarks when using the Gshare but similar improvements 
were not seen with the RTL. One striking difference that the C++ 
simulator has compared to the RTL is the availability of decode 
information and so it knows which instruction in a fetch bundle 
are branches and only makes predictions for those instructions. 
In case of the RTL, the decode information is not available and 
hence the history bits used to hash the PC may not be very 
consistent from one instance of a branch to the next. This can 
lead to significant inaccuracies for some cases and indeed that 
might be the case for the benchmarks that do not show much 
improvement over bi-modal.

B. Limitations of the study

The pipeline in the simulator was not modeled exactly 
as the RTL and hence might give optimistic results for some of 
the benchmarks. The RTL also assumes perfect I-Cache and D-
Cache and the benefits of having a branch predictor with higher 
accuracy are not as pronounced as having realistic caches. In 
case of realistic caches, cache misses feeding mis-predictions 
[CFD Paper] can have significant impact on the IPC.

C. Future Work

• The Gshare branch predictor can be pipelined. This will 
allow the use of a much larger PHT without impacting the 
cycle time. Block ahead prediction is an option that can 
be explored [7][8].

• A hybrid branch predictor style [5] can be implemented 
leveraging the existing Bimodal predictor and the Gshare 
predictor. This is in fact quite common in most high 
performance processor as none of the two perform better 
than the other for all available workloads.

• The I-Cache can be augmented with a small predecode 
cache or some sort of a decode predictor table [4] that can 
quickly provide only relevant decode information to the 
branch predictor so that the hashing algorithm can be 
more consistent.

V. CONCLUSION

This paper has presented the results of a study into a variety 
of Gshare style branch predictors considering the improvement 
in accuracy over the Bimodal style of predictor as well as 
performance trade offs between the various styles themselves. It 
has been shown that a PC set Gshare style predictor can make 

branch predictions with a higher degree of accuracy than other 
Gshare style predictors as well as outperforming Bimodal 
prediction. The results gathered also demonstrated the correlation 
between increasing predictor accuracy and increasing IPC. 
Considering the results of this branch prediction study and 
practical physical implementation costs, a specific branch 
predictor style was selected to be implemented in the FabScalar 
RTL. This implementation showed improvement over the 
existing Bimodal predictor for several benchmarks tested. Finally 
this paper has proposed further work which can potentially 
improve the performance and functionality of FabScalar.
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