AnyCore: A Synthesizable RTL Model for Exploring and Fabricating Adaptive Superscalar Cores

Rangeen Basu Roy Chowdhury, Anil Kumar Kannepalli, Sungkwan Ku, Eric Rotenberg

Electrical and Computer Engineering
North Carolina State University
OPPORTUNITY

• Different applications have different amounts of ILP

• Phases of a single application exhibit diverse instruction-level behavior
 • Different amounts of ILP (data dependencies, branch mispredictions)
 • Nearby vs. distant ILP
 • MLP

Key Point: Both coarse-grain and fine-grain variations exist

*Eliott Forbes PhD thesis
PROCESSOR SPECIALIZATION

• Adapt the microarchitecture to these coarse-grain and fine-grain variations
 • Fetch and execution widths
 • Out-of-order window (ROB, PRF, LQ/SQ, IQ)
 • Cache and predictor sizes
 • Pipeline depth

• Two main ways of adapting microarchitecture
 • Heterogeneous multicore
 • Multiple cores with same ISA but different microarchitectures
 • Adaptive
 • Design a single, large core
 • Downsize resources when they’re not profitable
OUTLINE

• AnyCore toolset
 • RTL
 • CAD Flow
 • PAT Tool

• Overhead analysis of adaptive cores

• Comparative study of adaptive core vs. heterogeneous multicore

• AnyCore chip
OUTLINE

• AnyCore toolset
 • RTL
 • CAD Flow
 • PAT Tool

• Overhead analysis of adaptive cores

• Comparative study of adaptive core vs. heterogeneous multicore

• AnyCore chip
ANYCORE TOOLSET

• Logic overheads of adaptive core erode its benefits w.r.t. one or multiple fixed cores
• Neglected aspect in adaptive core research
• AnyCore Toolset enables exploring this important aspect
CONTRIBUTIONS OF ANYCORE

• Toolset
 • A synthesizable parameterized RTL design
 • AnyCore PAT tool for architectural studies

• Understand circuit-level overheads of adaptivity

• Compare adaptive core vs. heterogeneous multicore

• Fabricate adaptive superscalar cores
ANYCORE TOOLSET: RTL

• Three dimensions of parameterization
 • Fixed core or adaptive core
 • Maximum structure sizes, widths, and depths
 • Granularity of adaptivity (for adaptive core)

• Easily excise the adaptivity to build a fixed core

• Many different AnyCore designs can be composed

• Paired with UPF for power gating of partitions
EXAMPLE ANYCORE DESIGN
ANYCORE TOOLSET: PAT TOOL

• Power, area and timing estimation tool
• Automated synthesis and analysis flow for populating the PAT Database
• Allows high level architectural exploration when coupled with a performance simulator
OUTLINE

• AnyCore toolset
 • RTL
 • CAD Flow
 • PAT Tool

• Overhead analysis of adaptive cores

• Comparative study of adaptive core vs. heterogeneous multicore

• AnyCore chip
Key point: 19% extra area and 1.67% lower frequency

Sources of overhead: Isolation cells, sub-optimal synthesis due to partitioning, input gating, control logic
Key point: Adaptive cores have non-negligible overheads largely ignored in previous works
Key Point: Static energy overhead is primarily due to excess static energy of extra ports and excess leakage due to larger cycle time.
Key Point: Dynamic Energy Overhead is due to extra muxes for size adaptivity and additional control logic.
OUTLINE

• AnyCore toolset
 • RTL
 • CAD Flow
 • PAT Tool

• Overhead analysis of adaptive cores

• Comparative study of adaptive core vs. heterogeneous multicore

• AnyCore chip
ADAPTIVE CORE VS. HETEROGENEOUS MULTICORE

• Highest weighted 100M SimPoints from 15 SPEC2006 benchmarks
• Customize cores to benchmarks to form a palette
• Performance obtained using C++ microarchitecture simulator
• Energy and cycle time from AnyCore PAT tool
• Compare three architectures:
 • *Homogeneous*: Core yielding best harmonic-mean BIPS
 • *Hetero-cg*: Coarse-grained scheduling on customized cores
 • *AnyCore-fg*: Fine-grained scheduling on AnyCore
ADAPTIVE CORE VS. HETEROGENEOUS MULTICORE

namd: AnyCore-fg is not eclipsed by either the average core (homogeneous) or the customized core.

mcf: Average core eclipses Anycore-fg due to large circuit-level overheads and low phase diversity.
HYBRID ARCHITECTURE

• One AnyCore + One Average Core

• Hierarchical scheduling
 • Benchmarks that favor average core, run on it for their entirety
 • Benchmarks that favor AnyCore, run on AnyCore with fine-grain scheduling
PERFORMANCE WITH HYBRID ARCHITECTURE

Key point: Hybrid is not completely eclipsed by any other type
OUTLINE

• AnyCore toolset
 • RTL
 • CAD Flow
 • PAT Tool

• Overhead analysis of adaptive cores

• Comparative study of adaptive core vs. heterogeneous multicore

• AnyCore chip
ANYCORE CHIP

• Fabricated with 130nm technology
• **Dynamic energy saving techniques**
 • Partition-level clock gating
 • Input gating of de-configured ports
• No power gating
 • Very low leakage at 130nm
 • Absence of power gating cells in library
• Many performance counters for experiments
• Includes neat debug features

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max Size</th>
<th>Allowed Configs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetch Width</td>
<td>4</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>Issue Width</td>
<td>5</td>
<td>3,4,5</td>
</tr>
<tr>
<td>Issue Queue</td>
<td>64</td>
<td>16, 32, 48, 64</td>
</tr>
<tr>
<td>LQ/SQ</td>
<td>32</td>
<td>16,32</td>
</tr>
<tr>
<td>PRF</td>
<td>128</td>
<td>64, 96, 128</td>
</tr>
<tr>
<td>ROB</td>
<td>128</td>
<td>64, 96, 128</td>
</tr>
</tbody>
</table>
ANYCORE CHIP: LAYOUT, FLOORPLAN AND PCB

<table>
<thead>
<tr>
<th>Physical design data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>IBM 8RF (130nm)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>5 mm x 5 mm</td>
</tr>
<tr>
<td>Area</td>
<td>25 mm²</td>
</tr>
<tr>
<td>Pads (signal, power)</td>
<td>100 (79, 21)</td>
</tr>
<tr>
<td>Transistors</td>
<td>3.4 million</td>
</tr>
<tr>
<td>Cells</td>
<td>1.5 million</td>
</tr>
<tr>
<td>Nets</td>
<td>7.6 million</td>
</tr>
</tbody>
</table>

Final Layout

Floorplan

PCB
Key point: Liveness test took very little effort, thanks to BIST.

Key point: Current scales with performance (resource sizes). Clock tree and synthesized caches make up a significant part of this.
SUMMARY

• AnyCore is a large step towards designing efficient adaptive cores

• Logic overheads of adaptivity are non-trivial and demand further research to reduce them

• AnyCore toolset will be released as an open-source tool and will be available for download from North Carolina State University

http://people.engr.ncsu.edu/ericro/research/anycore.htm
FUTURE WORK

• Further reduction of overheads
 • Make AnyCore “core-accurate” with respect to arbitrary fixed cores within its configuration space
 • Dynamic configurations achieve the same IPC, frequency, and energy of the corresponding fixed core

• Scheduling techniques, both predictive and reactive

• AnyCore as a general-purpose accelerator in a manycore system

• Further testing and measurement of the AnyCore chip
THANK YOU!

QUESTIONS