AnyCore: A Synthesizable RTL Model for Exploring and Fabricating Adaptive Superscalar Cores

Rangeen Basu Roy Chowdhury, Anil Kumar Kannepalli, Sungkwan Ku, Eric Rotenberg

Electrical and Computer Engineering

North Carolina State University

NC STATE UNIVERSITY

OPPORTUNITY

- Different applications have different amounts of ILP
- Phases of a single application exhibit diverse instruction-level behavior
 - Different amounts of ILP (data dependencies, branch mispredictions)
 - Nearby vs. distant ILP
 - MLP

Key Point: Both coarse-grain and fine-grain variations exist

*Eliott Forbes PhD thesis

PROCESSOR SPECIALIZATION

• Adapt the microarchitecture to these coarse-grain and fine-grain variations

- Fetch and execution widths
- Out-of-order window (ROB, PRF, LQ/SQ, IQ)
- Cache and predictor sizes
- Pipeline depth
- Two main ways of adapting microarchitecture
 - Heterogeneous multicore
 - Multiple cores with same ISA but different microarchitectures
 - Adaptive
 - Design a single, large core
 - Downsize resources when they're not profitable

3

OUTLINE

- AnyCore toolset
 - RTL
 - CAD Flow
 - PAT Tool
- Overhead analysis of adaptive cores
- Comparative study of adaptive core vs. heterogeneous multicore
- AnyCore chip

OUTLINE

- AnyCore toolset
 - RTL
 - CAD Flow
 - PAT Tool
- Overhead analysis of adaptive cores
- Comparative study of adaptive core vs. heterogeneous multicore
- AnyCore chip

ANYCORE TOOLSET

- Logic overheads of adaptive core erode its benefits w.r.t. one or multiple fixed cores
- Neglected aspect in adaptive core research
- AnyCore Toolset enables exploring this important aspect

IEEE ISPASS 2016, APRIL 17-19, UPPSALA, SWEDEN

6

CONTRIBUTIONS OF ANYCORE

- Toolset
 - A synthesizable parameterized RTL design
 - AnyCore PAT tool for architectural studies
- Understand circuit-level overheads of adaptivity
- Compare adaptive core vs. heterogeneous multicore
- Fabricate adaptive superscalar cores

ANYCORE TOOLSET: RTL

- Three dimensions of parameterization
 - Fixed core or adaptive core
 - Maximum structure sizes, widths, and depths
 - Granularity of adaptivity (for adaptive core)
- Easily excise the adaptivity to build a fixed core
- Many different AnyCore designs can be composed
- Paired with UPF for power gating of partitions

EXAMPLE ANYCORE DESIGN

© RANGEEN BASU ROY CHOWDHURY

IEEE ISPASS 2016, APRIL 17-19, UPPSALA, SWEDEN

9

ANYCORE TOOLSET: CAD FLOW

© RANGEEN BASU ROY CHOWDHURY

ANYCORE TOOLSET: PAT TOOL

- Power, area and timing estimation tool
- Automated synthesis and analysis flow for populating the PAT Database
- Allows high level architectural exploration when coupled with a performance simulator

OUTLINE

- AnyCore toolset
 - RTL
 - CAD Flow
 - PAT Tool

• Overhead analysis of adaptive cores

- Comparative study of adaptive core vs. heterogeneous multicore
- AnyCore chip

Key point: 19% extra area and 1.67% lower frequency

Sources of overhead: Isolation cells, sub-optimal synthesis due to partitioning, input gating, control logic

© RANGEEN BASU ROY CHOWDHURY

ENERGY

Key point: Adaptive cores have non-negligible overheads largely ignored in previous works

© RANGEEN BASU ROY CHOWDHURY

<u>Key Point</u>: Static energy overhead is primarily due to excess static energy of extra ports and excess leakage due to larger cycle time

© RANGEEN BASU ROY CHOWDHURY

ENERGY

<u>Key Point</u>: Dynamic Energy Overhead is due to extra muxes for size adaptivity and additional control logic

© RANGEEN BASU ROY CHOWDHURY

OUTLINE

- AnyCore toolset
 - RTL
 - CAD Flow
 - PAT Tool
- Overhead analysis of adaptive cores
- Comparative study of adaptive core vs. heterogeneous multicore
- AnyCore chip

ADAPTIVE CORE VS. HETEROGENEOUS MULTICORE

- Highest weighted 100M SimPoints from 15 SPEC2006 benchmarks
- Customize cores to benchmarks to form a palette
- Performance obtained using C++ microarchitecture simulator
- Energy and cycle time from AnyCore PAT tool
- Compare three architectures:
 - Homogeneous: Core yielding best harmonic-mean BIPS
 - Hetero-cg: Coarse-grained scheduling on customized cores
 - AnyCore-fg: Fine-grained scheduling on AnyCore

ADAPTIVE CORE VS. HETEROGENEOUS MULTICORE

<u>namd</u>: AnyCore-fg is not eclipsed by either the average core (homogeneous) or the customized core <u>mcf</u>: Average core eclipses Anycore-fg due to large circuit-level overheads and low phase diversity

© RANGEEN BASU ROY CHOWDHURY

HYBRID ARCHITECTURE

• One AnyCore + One Average Core

- Hierarchical scheduling
 - Benchmarks that favor average core, run on it for their entirety
 - Benchmarks that favor AnyCore, run on AnyCore with fine-grain scheduling

PERFORMANCE WITH HYBRID ARCHITECTURE

Key point: Hybrid is not completely eclipsed by any other type

© RANGEEN BASU ROY CHOWDHURY

IEEE ISPASS 2016, APRIL 17-19, UPPSALA, SWEDEN

21

OUTLINE

- AnyCore toolset
 - RTL
 - CAD Flow
 - PAT Tool
- Overhead analysis of adaptive cores
- Comparative study of adaptive core vs. heterogeneous multicore
- AnyCore chip

ANYCORE CHIP

- Fabricated with 130nm technology
- Dynamic energy saving techniques
 - Partition-level clock gating
 - Input gating of de-configured ports
- No power gating
 - Very low leakage at 130nm
 - Absence of power gating cells in library
- Many performance counters for experiments
- Includes neat debug features

Parameter	Max Size	Allowed Configs
Fetch Width	4	1,2,3,4
lssue Width	5	3,4,5
Issue Queue	64	16, 32, 48, 64
LQ/SQ	32	16,32
PRF	128	64, 96, 128
ROB	128	64, 96, 128

ANYCORE CHIP: LAYOUT, FLOORPLAN AND PCB

© RANGEEN BASU ROY CHOWDHURY

IEEE ISPASS 2016, APRIL 17-19, UPPSALA, SWEDEN

24

ANYCORE CHIP: MEASUREMENTS

<u>Key point</u>: Liveness test took very little effort, thanks to BIST.

<u>Key point</u>: Current scales with performance (resource sizes). Clock tree and synthesized caches make up a significant part of this.

© RANGEEN BASU ROY CHOWDHURY

SUMMARY

- AnyCore is a large step towards designing efficient adaptive cores
- Logic overheads of adaptivity are non-trivial and demand further research to reduce them
- AnyCore toolset will be released as an open-source tool and will be available for download from North Carolina State University

http://people.engr.ncsu.edu/ericro/research/anycore.htm

FUTURE WORK

- Further reduction of overheads
 - Make AnyCore "core-accurate" with respect to arbitrary fixed cores within its configuration space
 - Dynamic configurations achieve the same IPC, frequency, and energy of the corresponding fixed core
- Scheduling techniques, both predictive and reactive
- AnyCore as a general-purpose accelerator in a manycore system
- Further testing and measurement of the AnyCore chip

THANK YOU!

 \cap

Q

Q

 \mathcal{O}

0

O

QUESTIONS