AnyCore: A Synthesizable RTL Model for Exploring and Fabricating Adaptive
Superscalar Cores

Rangeen Basu Roy Chowdhury, Anil K. Kannepalli, Sungkwan Ku, and Eric Rotenberg

Department of Electrical and Computer Engineering
North Carolina State University
{rbasuro, akannep, sku2, ericro}@ncsu.edu

Abstract

Adaptive superscalar cores have the ability to dynamically
adjust their execution resources to match the instruction-level
parallelism (ILP) of different program phases. The goal of adap-
tivity is to maximize performance in as energy-efficient a manner
as possible. This is achieved by disabling execution resources
that contribute only marginally to performance for the code at
hand. Researchers have proposed many adaptive features, in-
cluding structures, superscalar width, and pipeline depth. The
benefits of adaptivity are eroded by its circuit-level overheads.
Unfortunately, circuit-level overheads cannot be effectively es-
timated or appreciated without a hardware design. To this end,
we developed a register-transfer-level (RTL) design of a highly
adaptive superscalar core, called AnyCore. AnyCore can be
used to quantify logic overheads of an adaptive core with re-
spect to fixed cores, synthesize and compare different adaptive
cores, synthesize and compare an adaptive core to a multi-core
comprised of multiple fixed core types, and fabricate adaptive
superscalar cores. We provide examples of these use-cases.

1. Introduction

As speed improvements from technology scaling slow with the
end of Dennard scaling, processor architectures are becoming
increasingly heterogeneous to eke out the most performance
and energy efficiency from silicon. Heterogeneity ranges from
CPU-GPU hybrids, to accelerators, to single-ISA heterogeneous
multi-core processors, to adaptive/reconfigurable processors.

Adaptive superscalar cores have the ability to dynamically ad-
just their execution resources to match the instruction-level paral-
lelism (ILP) of different program phases. The goal of adaptivity
is to maximize performance in as energy-efficient a manner as
possible. This is achieved by disabling execution resources that
contribute only marginally to performance for the code at hand.
Researchers have proposed various adaptive features, including
size-adjustable structures (reorder buffer, physical register file,
issue queue, load and store queues, caches, etc.) [28, 5,7, 21],
superscalar width (number of pipeline ways) [16], and pipeline
depth [22, 30].

The benefits of adaptivity are eroded by its circuit-level over-
heads. Unfortunately, circuit-level overheads cannot be effec-
tively estimated or appreciated without a hardware design. To
this end, we developed a register-transfer-level (RTL) design of

a highly adaptive superscalar core, called AnyCore. AnyCore
RTL is the centerpiece of the overall AnyCore Toolset which
enables computer architects to explore, and even fabricate, adap-
tive superscalar cores. The AnyCore Toolset, which will be
open-sourced, is comprised of the following:

e AnyCore RTL Model. This is the synthesizable RTL model of
AnyCore (written in Verilog). The RTL description of the core
is heavily parameterized, allowing AnyCore processors of
different sizes to be synthesized. A given AnyCore processor
is adaptive, i.e., its widths and structures can be dynamically
adjusted within its maximum dimensions.

e Clock gating and power gating tools. Adaptivity in the
AnyCore RTL is achieved nominally through combinational
logic that configures the formation of fetch bundles (fetch
width), the execution lanes used (issue width), and the struc-
ture partitions used (structure sizes). To maximize power sav-
ings, unused lanes and partitions should also be clock-gated
or power-gated. For the former, the AnyCore RTL instanti-
ates a clock gate cell for each lane and partition. A Verilog
wrapper makes it easy for the user to specify the clock gate
cell for a given standard cell library, and clock tree synthesis
automatically sizes clock gate cells. For the latter, the RTL
description is paired with a Unified Power Format (UPF) [2, 3]
description of power domains, which today’s EDA tools can
handle for automatically synthesizing, simulating, measuring,
and generating layouts of, power-gated designs. The provided
UPF serves as an example of placing lanes and partitions into
power domains, upon which the user can improvise to explore
different configurations of power domains.

o Synthesis and Analysis Flow. Low-level power estimation
flows, based on post-synthesis/post-layout netlist simulation,
are beyond the experiences of many computer architecture
researchers. The AnyCore Toolset includes such a flow out-of-
the-box. The utility of low-level power estimation is demon-
strated in this paper’s first use-case: measuring logic over-
heads of an adaptive core with respect to several fixed cores.

e AnyCore PAT Tool. The Power, Area, and Timing (PAT) tool
enables computer architecture researchers to automatically
generate per-stage/per-lane power, cycle time, and area esti-
mates, for:

— both fixed cores (AnyCore RTL can excise its logic for
adaptivity) and adaptive cores,

— different maximum fetch widths, issue widths, and structure
sizes,

— different dynamic configurations (for adaptive cores),

— either synthesized (standard-cell based) or custom memo-
ries (e.g., from a memory compiler or memory estimation
tool).

The per-unit power estimates can be combined with respective

per-unit activity counts produced by a C++ cycle-level mi-

croarchitecture simulator, thereby enabling architecture level

studies with synthesis-based power models and comprehen-
sive logic coverage. AnyCore RTL can be synthesized to dif-
ferent technology nodes and standard cell libraries, accommo-
dating researchers with access to commercial IP and/or open-

source IP such as FreePDK 45nm [33], FreePDK 15nm [12],

and Synopsys 32/28nm [1].

AnyCore can be used to quantify logic overheads of an adap-
tive core with respect to fixed cores, synthesize and compare
different adaptive cores, synthesize and compare an adaptive
core to a multi-core comprised of multiple fixed core types, and
fabricate adaptive superscalar cores. We provide several such
use-cases in this paper.

The paper is organized as follows. Section 2 discusses related
work. Section 3 describes the AnyCore Toolset. Sections 4,
5, and 6 provide three use-cases. Section 4 provides an ex-
ample of quantifying the logic overheads of an adaptive core
with respect to fixed cores. Section 5 provides an example of
using the AnyCore PAT tool and a C++ cycle-level simulator, to
compare an adaptive core and a heterogeneous multi-core. In
Section 6, we describe the AnyCore prototype that we fabricated.
This section of the paper describes the chip bring-up results
and early performance and power measurements for different
configurations.

2. Related Work

Past works on adaptive/reconfigurable processors lay the founda-
tion for AnyCore. Researchers have separately proposed struc-
ture resizing [28, 5,7, 21, 6, 10, 17, 26], pipeline depth adapta-
tion [22, 30], and pipeline width adaptation [16, 9, 14]. Each of
these works explore a single superscalar dimension. The Flicker
microarchitecture [27] can scale both width and structures, but
structure partitions are tied to lanes, hence, not independently
adjustable. The chief distinction, however, is that we develop an
RTL model of a width and size adaptive core and a toolset for
using it. Thus, our contribution is an RTL-based tool for explor-
ing and fabricating adaptive cores. In particular, the ability to
measure and understand logic overheads of a reconfigurable core
with respect to fixed cores is critical as the community considers
adaptive cores in the era of specialization.

AnyCore and the above approaches carve out smaller mono-
lithic cores from a superset monolithic core by deconfiguring
lanes and/or structure partitions, with the goal of mimicking
the optimal fixed core for the instruction-level behavior at hand.
A different form of microarchitectural adaptivity is aggregat-
ing multiple small cores to emulate a single larger and wider
superscalar core [18, 20, 34, 29]. The two modes offer high

thread-level parallelism (TLP) (disaggregated cores) and high
instruction-level parallelism (ILP) (aggregated cores).

Like the core-aggregation techniques, MorphCore [19] at-
tempts to modulate the balance between single-thread perfor-
mance and multi-threaded performance. Its approach is different,
however, and advocates the same philosophy as AnyCore which
is to begin with a large monolithic core and adapt it.

Single-ISA heterogeneous multi-core processors [23, 24, 25]
achieve adaptation by migrating a thread among multiple, di-
verse, fixed core designs. Using fixed core designs eliminates
the logic overheads of an adaptive core, but the number of fixed
core designs is limited and the overhead manifests in thread
migrations.

3. AnyCore Toolset

3.1. AnyCore RTL Model

The Verilog description of AnyCore is parameterized, in that

we have the ability to synthesize AnyCore processors of differ-

ent maximum widths (up to 8) and sizes (structures can be as
large as desired), and a specific AnyCore processor is adaptive

(i.e., dynamically configurable) within its maximum width and

size. Moreover, the logic for adaptivity can be excised, i.e., its

inclusion or exclusion is also parameterized, such that the same

Verilog description can be used to synthesize both fixed cores

and adaptive cores.

The starting point for the AnyCore RTL model was a §-wide
superscalar core generated by FabScalar [15]. This initial Verilog
description was modified extensively to arrive at the AnyCore
RTL model.

1. Restructuring for lanes: With FabScalar, each pipeline stage
is a top-level Verilog module and each pipeline register be-
tween stages is also a top-level Verilog module. This top-level
structure was preserved. Rather, within each stage, as much
logic as practical was partitioned into lanes. That is, all of the
logic that can be solely-affiliated with an instruction slot was
grouped together in a submodule within the pipeline stage
module. The same was done within pipeline register mod-
ules, i.e., submodules were created for individual instruction
packets.

2. Partitioning of structures: Each memory array that imple-
ments a structure (queue, list, table, register file, etc.) is
already encapsulated as a dedicated Verilog module. Within
this module, the memory array was partitioned into multi-
ple submodules and MUXes aggregate them into the overall
memory array.

3. Static configurability: While FabScalar can generate fixed
cores of different fetch and issue widths, it achieves this via
composition from a library of fixed-width stage designs (dedi-
cated Verilog descriptions for 1-wide, 2-wide, efc.) [15]; only
structure sizes are parameterized. In contrast, AnyCore is a
single Verilog description in which both widths and structure
sizes are parameterized. Moreover, a “fixed-versus-adaptive”
parameter controls whether or not the logic for dynamic con-
figurability (next item) is synthesized.

4. Dynamic configurability (adaptivity): Logic was added to
dynamically configure the design for arbitrary core configu-
rations. First, previously fixed width parameters were made
adjustable. The dynamic FETCH_WIDTH controls the num-
ber of fetched instructions that flow through the fetch through
decode stages and into the Instruction Buffer; the dynamic
DISPATCH_WIDTH controls the number of instructions that
are withdrawn from the Instruction Buffer, moved through
the rename and dispatch stages, and dispatched into the Is-
sue Queue; and the dynamic ISSUE_WIDTH controls the
number of issued instructions that flow through configured
execution lanes. Second, previously fixed size parameters
were made adjustable for all structures. Ultimately, the dy-
namic width and size parameters synthesize to two types of
control signals: signals that ensure instructions flow through
only the active lanes and structure partitions, and signals that
control clock-gating or power-gating cells (to turn on or off
power domains) and isolation cells (to clamp floating inputs
from off-domains).

There are two different versions of the AnyCore RTL model,
one that implements the PISA ISA [13] and another that imple-
ments the RISC-V ISA [8]. These are referred to as AnyCore-
PISA and AnyCore-RISCYV, respectively. AnyCore-PISA was
developed first, owing to its derivation from FabScalar. AnyCore-
RISCV is a port of AnyCore-PISA [11].

3.2. Clock Gating and Power Gating Tools

The AnyCore Toolset provides the computer architect with tools
to implement clock gating and power gating with low effort.
The key lies in the Verilog hierarchy within pipeline stages,
which are subdivided into lanes, and pipeline structures, which
are subdivided into partitions. This Verilog hierarchy enables
efficient expression of clock gating or power gating of lanes and
partitions.

3.2.1. Clock Gating. Each lane and partition receives a clock
input. This clock input is sourced by a generic clock gate module.
The generic clock gate module has the same interface as a clock
gate cell in a standard cell library, but it is just a Verilog wrapper.
Inside the wrapper, the user either instantiates (if doing clock
gating) or does not instantiate (if not doing clock gating) a clock
gate cell from his/her standard cell library. Clock tree synthesis
automatically takes care of sizing of clock gate cells.

In addition to RTL-based clock gating or power gating of
entire lanes and partitions, one may judiciously apply automatic
clock gating during synthesis. We did not apply synthesis-based
clock gating in the three use-cases that follow. For the chip
(third use-case), we used partition-level and lane-level clock
gating to turn off clocks to entire structure partitions and lanes,
respectively. This is orthogonal to fine-grained clock gating and
the two can be applied simultaneously on a design to save more
power. This, however, would not change the trend of power
consumption by the different configurations of AnyCore.

3.2.2. Power Gating. With power gating becoming increasingly
important in future technology nodes, today’s EDA tools and
commercial standard cell libraries are increasingly sophisticated

in their end-to-end support, from specification to layout, of mul-
tiple switchable power domains. Designers can specify power
domains and assign Verilog module instances to power domains
using Unified Power Format (UPF). The UPF power domain
description accompanies the Verilog description throughout the
tool flow. Different tools use the UPF according to their roles.

The AnyCore Toolset currently has several example UPF de-
scriptions, which the user can adapt for his/her adaptive core
designs.

3.3. Synthesis and Analysis Flow

Low-level power estimation, based on post-synthesis/post-layout
netlist simulation, has utility in measuring and understanding
logic overheads of adaptivity (as done in Section 4). Many
computer architects do not routinely perform such experiments.
Moreover, it is challenging to get such flows up-and-running
from scratch. The AnyCore Toolset comes with a synthesis and
analysis flow that can be used out-of-the-box.

Y vV
Synopsys

F 3

Design
Compiler

| |
v v v
v ¥

Cadence
NCSim

Synopsys
Prime
Time

Cell Library
(.lib, .db, .v)

F

h 4

Figure 1: Synthesis & Analysis Flow

3.3.1. Synthesis. As shown in Figure 1, the inputs to Synopsys
Design Compiler™ are the RTL description, an optional UPF
description, and constraints. A UPF description is supplied for
an adaptive core that employs power gating. After performing
synthesis, Design Compiler outputs three key files: (1) the gate-
level netlist in Verilog format, (2) the delays of gates and nets
in Standard Delay Format (SDF), and (3) a UPF description

corresponding to the gate-level netlist. Synthesis also outputs

area and frequency reports.

The next section explains how the post-synthesis tool flow uses
these three key files to analyze timing and power consumption.
3.3.2. Analysis: Obtaining Cycle Time and Power. Synopsys
Prime Time™ is used for analysis. Accurate cycle times are
obtained using static timing analysis in Prime Time™. Power
profiles of fixed cores and adaptive cores under chosen configu-
rations are characterized via the two-step process of (1) netlist
simulation (i.e., gate-level simulation) and (2) time-based power
estimation in Prime Time PX™,

1. Netlist simulation: After synthesizing a design, benchmarks
are simulated on the synthesized netlist. As shown in Fig-
ure 1, Cadence NCSim takes in the netlist and SDF, and uses
the SDF to annotate the netlist for detailed delay modeling.
The output of a netlist simulation is switching activity infor-
mation in the form of a Value Change Dump (VCD) file. Not
shown in the diagram, is a top-level Verilog testbench that
instantiates the netlist of the core and loads a benchmark for
simulation on the core.

2. Time-based power estimation: As shown in Figure 1, the
gate-level netlist, gate-level UPF, and activity file (VCD) are
read into Prime Time PX™. Prime Time PX™ builds a
virtual power delivery network based on the UPF. The time-
based power estimation observes power domains being on or
off, according to the states of power-gating control signals
obtained from the VCD.

3.4. AnyCore PAT Tool

The AnyCore PAT tool automatically generates a database of
power, area, and timing estimates for all variations of each
pipeline stage (front-end) and each execution lane (back-end).
The following description is geared towards “pipeline stage”,
but similar principles apply to “execution lane” (moreover, a
given lane is impacted by the number of other lanes). For each
pipeline stage, the following dimensions are varied: (1) Whether
the pipeline stage is for a fixed core or an adaptive core. (2) The
width of the pipeline stage. (3) The sizes of structures referenced
by the pipeline stage. (4) The dynamically-configured width of
the pipeline stage (only applies to an adaptive pipeline stage). (5)
The dynamically-configured sizes of referenced structures (only
applies to an adaptive pipeline stage). The first three dimensions
affect the number of unique synthesis runs. The last two dimen-
sions are handled by UPF-driven analysis of the synthesized
netlist, for both clock gating (dynamic power) and power gating
(static and dynamic power).

The user can specify the implementation strategy for each
structure: synthesized memory (standard-cell based) versus cus-
tom memory (IP block). The latter is facilitated by a library
of custom memories. Just like standard cells, each custom
memory is abstracted by a .lib file which specifies its power,
area, and timing parameters. A lower level tool within the
AnyCore PAT tool generates .lib files from power, area, and
timing data obtained by third-party memory estimation tools,
e.g., FabMem [32], CACTI [31], commercial or academic-use

memory compilers [1], etc. The generated .lib files have the
same names as corresponding leaf Verilog modules representing
the structures or structure partitions. If the leaf Verilog module is
black-boxed (empty module), synthesis uses the corresponding
lib file, otherwise it synthesizes the module.

4. Use-Case 1: Logic Overheads of an Adaptive
Core

The goal of this use-case is to measure the logic overheads of
an adaptive core with respect to fixed cores, and understand
the sources of these overheads. The logic overheads depend on
(1) the specific adaptive core design and (2) the configurations
that will be compared against corresponding fixed cores. The
adaptive core design and its configurations chosen for overhead
analysis are described in Sections 4.1 and 4.2, respectively. We
use the Synthesis and Analysis Flow from the AnyCore Toolset
(from Section 3.3) to measure area, frequency, and energy over-
heads of adaptivity. Area and frequency overheads are studied
in Section 4.3 and energy overhead is studied in Section 4.4.

Please note the following additional methodological points,
which are unique to this section. First, the AnyCore-PISA ver-
sion of the RTL was used. Second, the flow was configured to
use a commercial 45nm standard cell library. Third, L1 instruc-
tion and data caches are not included in the analysis for both
adaptive and fixed cores. Inclusion of identical L1 caches in the
adaptive and fixed cores will reduce the reported percentage en-
ergy overheads as the caches will contribute a large in-common
energy component. Fourth, all memories are synthesized. In
later sections: Use-Case 2 uses the AnyCore-RISCV version
of the RTL, an open-source 45nm standard cell library, custom
memories, and L1 caches; Use-Case 3 is a AnyCore-PISA based
chip fabricated in IBM 130nm with all memories synthesized,
including L1 caches. Table 1 summarizes this information for
the three use-cases.

4.1. Specific Adaptive Core Design

Figure 2 depicts the adaptive core that we synthesized from
the AnyCore RTL model and the power domains specified by
its UPF description. In its widest dynamic configuration, the
pipeline has a fetch width of four instructions and an issue width
of five instructions. The first three execution lanes — memory,
control, and simple/complex ALU — suffice to support all integer
instructions. Two additional simple ALU lanes round out the
back-end. Key structures for exposing and extracting instruction-
level parallelism (ILP) are also shown. They include the Issue
Queue (IQ), Load and Store Queues (LQ, SQ), Physical Register
File (PRF), Active List (AL), and Free List.

The UPF description specifies 9 power domains, one of which
is the TOP domain that is always on. The power domains can
be seen in Figure 2. Unshaded lanes and structure partitions
(white) are in the TOP domain, hence, always on. Conversely,
each shaded lane or structure partition (gray) is in its own power
domain, and is labeled with a power domain number. Several
structures are configured in unison and these exceptions will be
pointed out.

Table 1: Methodology choices for the three use-cases in this paper.

| Use-Case | Version of RTL Model | Technology | Memories | L1 Caches \
1(84) AnyCore-PISA commercial 45nm synthesized excluded
2 (§5) AnyCore-RISCV open-source 45nm (FreePDK) | custom (FabMem) | included (cacti)
3(86) AnyCore-PISA IBM 130nm synthesized included (synthesized)
Register Reod /
---Decode . __instBuffer .- Bename Dispatch, _tssue Queve, Execute /\Writehock
~ N H H g

VAL [5+C

. “ :

H '

' i

H H

H " ' Execute
VLA

H

H

Figure 2: The adaptive core used in this section.

The TOP domain has one lane in the front-end and the first
three execution lanes in the back-end, so that the minimim-width
configuration is fully functional. All structures have a base
partition in the TOP domain. The sizes of the base partitions,
as well as the power-gated expansion partitions, are annotated
in the figure. Some logic blocks within the front-end pipeline
stages could not be efficiently or correctly partitioned by lane,
typically due to operating on the bundle as a whole. These logic
blocks are shown as spanning the whole width of the pipeline
stage and are included in the TOP domain.

Superscalar width is increased via the power domains labeled
“1” and “2” in the figure. Power domain “1” adds one more
lane in the front-end plus one simple ALU lane in the back-end,
for a 2-way fetch, 4-way issue superscalar processor. Power
domain “2” adds another two lanes in the front-end and another
simple ALU lane in the back-end, for a 4-way fetch, 5-way issue
superscalar processor.

The remaining six power domains are for adapting the sizes
of structures. The Physical Register File (PRF), Free List, and
Active List (AL) scale together: each has two power-gated ex-
pansion partitions, in power domains “3”” and “4”. The Load
and Store Queues (LQ/SQ) have one power-gated expansion
partition, in power domain “5”. Finally, the Issue Queue (IQ)
has three power-gated expansion partitions, in power domains
“6”, “7”, and “8”.

4.2. Configurations Chosen for Overhead Analysis

The six configurations shown in Table 2 were chosen for over-
head analysis. These configurations represent a range of widths
and sizes. Three widths are represented (1, 2, and 4) and two
different sizings for each width. Each configuration is named
according to its width and relative size. For example, 4WL is
a 4-wide core with large structures, IWS is a 1-wide core with
small structures, and so forth. The table uses abbreviations for
the function unit mix: M (memory lane), B (control lane), S/C
(both simple and complex ALUs), S (simple ALU only).

4.3. Area and Frequency

Figure 3 shows the synthesized areas of the six fixed cores and
AnyCore. AnyCore’s area includes isolation cells necessary for
power gating. AnyCore’s area overhead, with respect to the
biggest fixed core (4WL), is 0.15 sq mm or about 19%.

Figure 4 shows the frequencies of the six fixed cores and
AnyCore. An interesting result is that the frequencies across the
different fixed cores are fairly flat and changes by only 6.7%.
This can be attributed to the use of fully synthesized structures
and our constraint strategy for synthesis (discussed further in
Section 4.4). As logic depth for such a structure only increases
logarithmically, doubling its size does not double the propagation
delay through it. The frequency of AnyCore is 1.67 GHz, 8.3%
lower than the smallest fixed core and only 1.67% lower than the

Table 2:

Core Configurations.

| Parameter 1WS | IWL | 2WS | 2WL 4WS | 4WL
Fetch Width 1 1 2 2 4 4
Issue Width 3 3 4 4 5 5
Issue Queue 16 32 32 48 48 64
Load/Store Queues | 16 16 16 32 16 32
Active List 64 96 64 96 96 128
Register File 64 96 64 96 96 128
BTB /BPU/RAS | 256/1024/8 | 256/1024/8 | 512/2048/16 | 512/2048/16 | 1024/4096/16 | 1024/4096/16
Func Unit Mix M,B,S/C M,B,S/C M,B,S/C,S M,B,S/C.,S M,B,S/C,S,S M,B,S/C,S,S
1.20 HFixed ®Anycore
- 0.90
E 1.00
Z 0.50 5) 07
g P
8 060 3 0.60
3 o
.% 0.40 g 0.45
g &3 0.30
£020 3
i3]
0.00 0.15
o & o o N @
SR & P o @ & © o
¥ SIS

Figure 3: Synthesized areas of the six fixed cores and AnyCore.

2.40

o
oo @
o o o

Frequency (GHz)
=
(=]
=

0.40

0.00

Figure 4: Frequencies of the six fixed cores and AnyCore.
largest one.
4.4. Energy

As explained in Section 3.3.2, the AnyCore Toolset’s power
analysis flow uses netlist simulation of benchmarks followed
by time-based power estimation in Prime Time PX™. While
we can use (and have used) SPEC benchmarks for netlist sim-
ulations, they do not utilize the entire core well (e.g., frequent
branch mispredictions cause underutilization of structures). Yet,
we need high utilization in order to measure the intrinsic energy
of AnyCore and the fixed cores. Therefore, we use a high-ILP
microbenchmark for the netlist simulations that drive time-based
power estimation.

Figure 5: Energy per cycle of fixed cores and corresponding con-
figurations of AnyCore.

The total energy/cycle (static and dynamic) of the different
configurations are plotted in Figure 5. Each configuration has
two data points, for the fixed core and AnyCore. Figure 6 shows
the percent energy overhead of each AnyCore configuration
relative to the corresponding fixed core. The energy overheads
are significant, ranging from 17% (1WL) to 27% (4WS). Each
bar in the graph is subdivided into static and dynamic energy
contributions to the total overhead.

One trend is that the static energy contribution to overhead is
larger for the smaller cores. This is due to two reasons. First, the
cycle time difference is greatest between AnyCore and smaller
fixed cores. Static energy increases with cycle time (whereas dy-
namic energy only increases with activity, hence, with number of
cycles). Second, AnyCore provisions read and write ports to all
structures for the widest superscalar configuration. The number
of extra ports is greatest with respect to the narrowest cores. Con-
versely, there are no extra ports with respect to the widest cores.
In narrow configurations of AnyCore, lanes (pipeline ways) are
turned-off but their dedicated ports to structures — while not
consuming dynamic power — still consume static power.

We were expecting energy overhead to be less with respect to
fixed 4WL. Primarily, fixed 4WL is of the same superscalar com-
plexity as AnyCore’s maximum configuration. Their structures
are the same size and have the same number of ports. More-
over, the cycle time difference is modest. For both reasons, we
expect static energy overhead to not be a major factor for this
comparison, and indeed it is not. So why is dynamic energy

W Static W Dynamic

30%

25%

20%
15%
10%
5%
0%

«:‘:D ..;-}\’ 4_:_‘;-.:9

Y AN an

Energy Overhead

N

S T ~

A = D

Figure 6: Percent energy overhead of AnyCore configurations
w.r.t. fixed counterparts.

overhead so high for equal superscalar complexity? Partitioned
structures are the root cause. Synthesis is able to optimize bet-
ter with a monolithic structure than a structure with artificial
internal boundaries. This factor manifested more as dynamic
energy overhead than cycle time overhead owing to our strategy
for constraining synthesis.

Due to the richness of modern standard cell libraries, synthesis
timing constraints have a profound impact on tradeoffs among
cycle time, dynamic power, and static power. Our strategy for
synthesizing a core (whether it be AnyCore or a fixed core) is to
make multiple synthesis runs, successively tightening the cycle
time constraint by 10ps until it cannot be met. As the constraint
is tightened, synthesis chooses cells that are faster but that con-
sume greater area, static power, and dynamic power. Being too
aggressive may lead to an incremental frequency gain while pay-
ing too much in terms of both dynamic and static energy. Static
energy is a duplicitous factor, however: a key justification for
minimizing cycle time (aside from performance considerations)
is to decrease static energy/cycle, which increases with cycle
time (unlike dynamic energy).

There are three key takeaways from this section.

1. The dominant source of static energy overhead is excess
ports, which afflicts configurations that are narrower than the
maximum width.

2. The dominant source of dynamic energy overhead is parti-
tioning of structures. Artificial internal boundaries increase
logic depth. This creates a tension for synthesis, between min-
imizing cycle time versus choosing slower energy-efficient
cells.

3. These results motivate research on reducing logic overheads
of adaptivity. Power gating excess ports within memory struc-
tures should be looked at. Reliably sensing and tuning fre-
quency to the configuration is an important goal both for
reducing static energy/cycle overhead and improving perfor-
mance. Additionally, AnyCore’s design itself may need to be
adjusted to enhance the frequency differentials that may be
possible.

5. Use-Case 2: Adaptive vs. Heterogeneous Cores

The purpose of this section is to show a use-case of the AnyCore
PAT Tool. For per-stage/per-lane power estimates and whole-
core cycle time estimates, we used the AnyCore PAT Tool target-
ing the FreePDK 45nm standard cell library [33], FabMem [32]
for highly-ported RAMs/CAMs, and CACTI [31] for caches.

The per-stage/per-lane power data are combined with correspond-

ing activity counts from an in-house C++ cycle-level execute-at-

execute microarchitecture simulator.

We compare an adaptive core and a heterogeneous multi-core
processor customized to the workload. The workload consists of
the highest-weighted 100M SimPoint from each of 15 SPEC2006
benchmarks compiled using “gcc -O3”. Thus, the hetero palette
consists of 15 core types and we will consider scheduling only
the corresponding 15 dynamic configurations for the adaptive
core. Since we are interested in trading some performance for
an even larger energy savings, for each benchmark, we found
the narrowest and smallest core that yields an IPC within 15%
(or better) of the peak IPC (which is generally obtained on the
widest and largest core).

We compare four architectures. “cg” and “fg” denote coarse-
grain and fine-grain scheduling.

e Homogeneous: All benchmarks are run on the one core type
that yields the highest harmonic mean BIPS.

e Hetero-cg: Each benchmark is run on the core type that yields
the highest BIPS for that benchmark. Energy efficiency is
built-in to some extent in the way the core palette was derived,
as explained above. When maximum BIPS is the objective, 5
of the 15 core types in the hetero palette are utilized by the
entire workload.

e AnyCore-fg: Each benchmark is divided into 10K-instruction
intervals. Each interval is scheduled on the lowest-energy
configuration that yields IPC within X% of the highest-IPC
configuration (for that interval). We consider values of X
between 0% and 25%, in 5% increments, yielding a pareto
frontier of six points in the energy vs. delay graphs that follow.

e Hybrid: This architecture is explained below.

The graph in Figure 7a plots energy versus delay for the
namd benchmark. For namd, the large disparity in execution
time between Hetero-cg (its best core type) and Homogeneous
(the best single core type for the whole workload) highlights
the benefit of heterogeneity. Furthermore, namd is an example
where AnyCore’s pareto frontier (AnyCore-fg) is not entirely
eclipsed by either Homogeneous or Hetero-cg. Therefore, the
adaptive core provides a useful energy-delay continuum. 8§ of
the 15 benchmarks fall into the same class as namd, wherein
the adaptive core is not entirely eclipsed, despite its significant
cycle time and energy overhead with respect to fixed cores. The
benefits of fine-grain adaptivity compensate for the adaptive
core’s cycle time and energy tax.

On the other hand, for the other 7 benchmarks, the benefits
of fine-grain adaptivity are insufficient to overcome the adaptive
core’s cycle time and energy tax. The mcf benchmark is a repre-
sentative example. Its energy and delay are plotted in the graph
of Figure 7b. For one thing, coarse-grain heterogeneity is of little

value for mcf: its chosen core type (Hetero-cg) is the homoge-
neous core type (Homogeneous). This fixed core fully eclipses
AnyCore’s pareto frontier. This negative result highlights the
importance of accounting for the cycle time and energy tax of
within-core adaptivity, an aspect that has been largely ignored in
past work. It also highlights the need for research on reducing
the logic overhead of within-core adaptivity.

The graph in Figure 7c plots average energy versus average
delay for all benchmarks. A zoomed-in version is shown in
Figure 7d. The average looks like mcf: AnyCore-fg is eclipsed
by Homogeneous. Several low-IPC benchmarks, including mcf,
contribute disproportionately to average delay, benefit little from
fine-grain adaptivity, and are sensitive to the cycle time tax of
the adaptive core. The graph shows a fourth processor design,
Hybrid, comprised of two core types: the homogeneous core and
the adaptive core. The seven benchmarks, for which AnyCore-
fg is eclipsed, run on the homogeneous core. The other eight
benchmarks run on the adaptive core with fine-grain switching.
Hybrid is robust in that it provides a single best fixed core and an
adaptive core for accelerating benchmarks with exploitable fine-
grained phase behavior. Such a Hybrid would not be conceived
in the context of prior work that largely ignores logic overheads
of reconfigurable cores.

6. Use-Case 3: AnyCore Chip

As a third use-case, we fabricated a chip that implements the
same adaptive core shown in Figure 2 (maximum fetch and issue
widths of 4 and 5, respectively). The core includes L1 instruction
and data caches. All memories, including the L1 caches and
branch predictor structures, are synthesized (standard-cell based
RAMs). Unlike the first use-case, which used power-gating, the
chip implements clock-gating of inactive lanes and partitions.
Static power is negligible in the older foundry process. Moreover,
the older standard cell library does not have the built-in power-
gating support that is present in newer standard cell libraries,
rendering it incompatible with physical design flows that exploit
UPF and its peer CPF (Common Power Format).

The physical design data, final layout, floorplan, and printed
circuit board (PCB) are shown in Figure 8. The chip is 25 mm?
in an IBM 130nm process and has 100 pads, 79 of which are
signal pads. The 79 signal pads primarily consist of dedicated
instruction and data buses (for cache miss handling), a debug
bus for directly interacting with the chip, such as configuring
the adaptive core, directly reading/writing the caches, efc., and
clock, reset, and assorted control signals. The chip is packaged
in a CQFP-100 package (100 pins, 25 on each side) and the
package is housed in a compatible 100-pin socket on a custom-
designed 4-layer PCB. The package and socket can be seen in
the top-side image of the PCB. The bottom-side, not shown, has
a standard FMC LPC connector and other passive components
(decoupling capacitors, power measurement resistor). The LPC
connector mates the PCB to an FPGA board (we currently use
the Xilinx ML605). The FPGA is programmed with a testbench
that services cache miss requests and manages the debug bus.

The chip has a built-in “liveness test”, the results of which

OHomogeneous @Hetero-cg & Anycore-fg

50
w0 e,
=
230 ‘b
£
z 20
s}
10
0
0 25 50 75 100 125 150
Delay (ms)
(a) namd
OHomogeneous @Hetero-cg A Anycore-fg
100
A
50 £
5 'Y
2 60 @
2
g 40
431
20
0
0 250 500 750 1,000 1,250 1,500
Delay (ms)
(b) mcf
OHomogeneous @Hetero-cg A Anycore-fg AHybrid
60
50 A
£ 40 x
5 % A
g 30
oy 20
«
10
0
0 60 120 180 240 300 360
Avg Delay (ms)

(c) average

OHomogeneous ®@Hetero-cg A Anycore-fg AHybrid

55

= n
on o

.
=}
>

Avg. Energy (mlJ)
>

%)
n

[7%)
(=]

240 260 280 300 320 340 360
Avg Delay (ms)

(d) average-zoomed

Figure 7: Adaptive vs. Hetero.

Qulubalubug

Final Layout

Physical design data

Technology IBM 8RF (130nm)

Dimensions 5mm X 5 mm

Area 25 mm?

Pads 100

(signal, power) | (79, 21) Load/Store Unit:
Transistors 3.4 million Agen, LQ, Q. D$
Cells 1.5 million i e
Nets 7.6 million

Fetch Unit: 15, BTB, BP, RAS, next-pc

Pad Ring

| Active List |
(ROB) 4

u8q

Issue Queue

-
ST

anyitabLealmnna B

etch Queue _‘

PCB

Floorplan

Figure 8: AnyCore chip and printed circuit board.

Chipscope Waveform

S [S o B
MmUY

Simulation Waveform

Toggle

Clock

Figure 9: Chip liveness test.

are shown in Figure 9. This test is faciliated by three features.
First, the caches can be configured as either cache or scratchpad,
controlled either by a configuration register or a dedicated pin.
Second, a chip reset initializes the top several rows of the caches
(presuming scratchpad mode) to a test program. Third, the
test program includes several “toggle” instructions co-mingled
with various other instructions of all types (loads, stores, ALU
ops, branches). This is a custom instruction added for the sole
purpose of toggling a dedicated pin. To initiate the liveness
test, the clock is started, the pin for scratchpad mode is asserted,
and reset is asserted. We monitor the toggle pin using Xilinx
ChipScope ILA™ (Integrated Logic Analyzer in the FPGA).
The top waveform is a screen capture of the toggle pin of the chip
(from ChipScope). It matches the bottom waveform obtained
from simulation. We ran other microbenchmarks, loaded through
cache misses, to test functionality. Functional testing is on-going
and no bugs or defects have been observed so far.

Figure 10 shows measured IPC and current (mA) for a high-
IPC and long-running microbenchmark that repeatedly sums
elements of an array. Measurements were taken for the three
different core configurations shown in Table 3 with the expec-
tation that IPC and current would both increase monotonically
with superscalar width and size. The measurements bore this
trend. IPC is very close to 1 and 2 for the 1-wide and 2-wide
configurations, and just under 3 for the 4-wide configuration.
We hypothesize, but have not yet investigated, that the innermost
taken loop-branch is limiting average fetch bundle size below
4 and/or data dependencies limit IPC below 4. The current
increases linearly from 22 mA to 31 mA.

Table 3: Three configurations for current measurements.

] Parameter conf. 1 | conf.2 | conf. 3
Fetch Width 1 2 4
Issue Width 3 4 5
Issue Queue 32 64 64
Load/Store Queues | 32/32 32/32 32/32
Phys. Register File | 96 128 128

The first configuration’s current consumption (22 mA) seems
disproportionate with respect to the current differential between
it and the maximally configured core. The reason is that a lot
of power is consumed by the clock tree and in particular the
many D flip-flop sinks in the synthesized caches. Table 4 shows
results of our “idle power tests”. In all four tests, the dedicated
stall_fetch input pin is asserted to stall the fetch stage so that no

sl [PC s Core Current

xm

[S%]
[~
[=]
Core Current (mA)

15 15
1 l/ 10

1 2 3
Configuration ID

Figure 10: Chip measurements: IPC and current for three config-
urations.

new fetch bundles are brought into the pipeline. In general use,
the FPGA uses this control signal and the debug bus in the pro-
tocol for reconfiguring the core, but for the idle power tests it is
used simply for fetch gating indefinitely. The four tests cover the
minimum and maximum configurations with the clock disabled
and enabled. With the clock disabled, power is near-zero for
both the minimum and maximum configurations. With the clock
enabled, power is 17 mA and 20 mA for the minimum and maxi-
mum configurations. This is solely clock tree power (owing to
fetch gating the core), including the clock routing, clock buffers,
and limited internal switching in the D flip-flop sinks. The 3
mA delta in clock tree power gives a sense of the number of
clock-gated flip-flops between the minimum and maximum con-
figurations, and its contrast with the 17 mA baseline also gives a
sense of the large contribution of the always-clocked instruction
and data caches. Although we cannot precisely quantify their
contribution (because we cannot clock-gate the minimal pipeline
configuration), a practical estimate is about 16 mA (since 1-wide
to 4-wide exhibits a clock power delta of 3 mA, let’s assume 1
mA if the 1-wide configuration were clock-gated). Therefore,
to implicitly factor-out the synthesized caches’ contribution to
clock tree power, one can view the current measurement graph
as starting at about 16 mA.

Table 4: Idle power tests.

stall_fetch | clock config. current (mA) \
true disabled | minimum | 0.01

true disabled | maximum | 0.01

true enabled | minimum | 17

true enabled | maximum | 20

7. Summary

This paper presented AnyCore, a synthesizable RTL model of
an adaptive superscalar core, and the AnyCore Toolset for ef-
fectively using it. A key advantage of an RTL-based tool, over
conventional analytical frameworks, is the ability to account for

logic overheads of a reconfigurable core with respect to fixed
cores in its configuration space. Moreover, it enables doing this
accounting in the context of a whole core and commercial/open
standard cell libraries. In the era of specialization, where the
objective is to eke out the most performance and energy effi-
ciency from silicon, measuring, understanding, accounting for,
and ultimately reducing logic overheads is critically important.

The AnyCore RTL model is a single Verilog description with
rich static configuration options. The user can synthesize (1)
fixed and adaptive cores, (2) fixed/adaptive cores of different
maximum widths and sizes, and (3) adaptive cores with clock-
gating or power-gating. And, of course, a given adaptive core
is dynamically configurable within its maximum dimensions.
The AnyCore Toolset comes with a Synthesis and Analysis Flow
for low-level power estimation (crucial for measuring power
overheads of reconfigurable logic) and the AnyCore PAT tool
for automatically generating per-stage/per-lane power, area, and
timing databases for use with C++ cycle-level simulators.

In this paper, we demonstrated three use-cases: measuring
logic overheads of an adaptive core with respect to fixed cores,
comparing an adaptive core to a heterogeneous multi-core for
different configuration/migration granularities, and fabrication
of a prototype adaptive core.

The AnyCore Toolset is a collection of open-source software,
gateware, and scripts, and is available for download from North
Carolina State University [4].

8. Acknowledgments

This research was supported by NSF grant CCF-1018517 and a
gift from Qualcomm. Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

References

[1] “Synopsys worldwide university program,” available at www.synopsys.
com/community/universityprogram/Pages/default.aspx. [Online]. Avail-
able: www.synopsys.com/community/universityprogram/Pages/default.
aspx

[2] “Ieee standard for design and verification of low power integrated circuits,
pp. 1-218, 2009, iEEE Std 1801-2009.

[3] “Ieee standard for design and verification of low-power integrated circuits,”
pp. 1-348, 2013, iEEE Std 1801-2013 (Revision of IEEE Std 1801-2009).

[4] “Anycore toolset,” 2016. [Online]. Available: http:/people.engr.ncsu.edu/
ericro/research/anycore.htm

[5] D. H. Albonesi, “Dynamic ipc/clock rate optimization,” in Computer Ar-
chitecture, 1998. Proceedings. The 25th Annual International Symposium
on, 1998, pp. 282-292.

[6] D.H. Albonesi, “Selective cache ways: on-demand cache resource alloca-
tion,” in Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual
International Symposium on, 1999, pp. 248-259.

[7] D.H. Albonesi, R. Balasubramonian, S. G. Dropsbo, S. Dwarkadas, E. G.
Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro,
P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster, “Dynam-
ically tuning processor resources with adaptive processing,” Computer,
vol. 36, no. 12, pp. 49-58, 2003.

[8] K. Asanovi¢ and D. A. Patterson, “Instruction sets should be free:
The case for risc-v,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-146, Aug 2014. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html

[9] R. I. Bahar and S. Manne, “Power and energy reduction via pipeline
balancing,” in Computer Architecture, 2001. Proceedings. 28th Annual
International Symposium on, 2001, pp. 218-229, iD: 1.

3

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi, “Reducing
the complexity of the register file in dynamic superscalar processors,”
in Microarchitecture, 2001. MICRO-34. Proceedings. 34th ACM/IEEE
International Symposium on, 2001, pp. 237-248.

R. Basu Roy Chowdhury, A. K. Kannepalli, and E. Rotenberg, “Fabscalar-
risc-v,” 2nd RISC-V Workshop, 2015.

K. Bhanushali and W. R. Davis, “Freepdk15: An open-source predictive
process design kit for 15nm finfet technology,” in Proceedings of the 2015
International Symposium on Physical Design. ACM, 2015, pp. 165-170.
D. Burger, T. Austin, and S. Bennett, “Evaluating future microprocessors:
The simplescalar toolset,” University of Wisconsin-Madison, Tech. Rep.
CS-TR-1308, 1996.

A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P. Bose, “Energy
efficient co-adaptive instruction fetch and issue,” in Computer Architec-
ture, 2003. Proceedings. 30th Annual International Symposium on, 2003,
pp. 147-156.

N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi,
B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg, “FabScalar:
Composing Synthesizable RTL Designs of Arbitrary Cores Within a
Canonical Superscalar Template,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser. ISCA-38, June
2011, pp. 11-22.

E. Chun, Z. Chishti, and T. N. Vijaykumar, “Shapeshifter: Dynamically
changing pipeline width and speed to address process variations,”
in Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 41. Washington, DC, USA:

IEEE Computer Society, 2008, pp. 411-422. Available: http:
//dx.doi.org/10.1109/MICRO.2008.4771809
S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H.

Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis, and M. L.
Scott, “Integrating adaptive on-chip storage structures for reduced
dynamic power,” in Proceedings of the 2002 International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’02.
Washington, DC, USA: IEEE Computer Society, 2002, p. 141. Available:
http://dl.acm.org/citation.cfm?id=645989.674326

E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “A reconfigurable
chip multiprocessor architecture to accommodate software diversity,” in
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, 2007, pp. 1-6, iD: 1.

K. Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt,
“Morphcore: An energy-efficient microarchitecture for high performance
ilp and high throughput tlp,” in Microarchitecture (MICRO), 2012 45th
Annual IEEE/ACM International Symposium on, 2012, pp. 305-316.

C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler, “Composable lightweight processors,” in
Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM Interna-
tional Symposium on, 2007, pp. 381-394, iD: 1.

V. Kontorinis, A. Shayan, D. M. Tullsen, and R. Kumar, “Reducing peak
power with a table-driven adaptive processor core,” in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,
2009, pp. 189-200, iD: 1.

J. Koppanalil, P. Ramrakhyani, S. Desai, A. Vaidyanathan, and
E. Rotenberg, “A case for dynamic pipeline scaling,” in Proceedings of the
2002 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, ser. CASES "02. New York, NY, USA: ACM,
2002, pp. 1-8. Available: http://doi.acm.org/10.1145/581630.581632

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: the potential for pro-
cessor power reduction,” in Microarchitecture, 2003. MICRO-36. Pro-
ceedings. 36th Annual IEEE/ACM International Symposium on, 2003, pp.
81-92,iD: 1.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded work-
load performance,” in Computer Architecture, 2004. Proceedings. 31st
Annual International Symposium on, 2004, pp. 6475, iD: 1.

R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture opti-
mization for heterogeneous chip multiprocessors,” in Proceedings of the
15th International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT *06. New York, NY, USA: ACM, 2006, pp.
23-32. Available: http://doi.acm.org/10.1145/1152154.1152162

S. Lopez, O. Garnica, D. H. Albonesi, S. Dropsho, J. Lanchares, and J. I.
Hidalgo, “Adaptive cache memories for smt processors,” in Digital System
Design: Architectures, Methods and Tools (DSD), 2010 13th Euromicro
Conference on, 2010, pp. 331-338.

P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker,
“Flicker: a dynamically adaptive architecture for power limited
multicore systems,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013, pp. 13-23. Available:
http://doi.acm.org/10.1145/2485922.2485924

[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power requirements
of instruction scheduling through dynamic allocation of multiple datapath
resources,” in Microarchitecture, 2001. MICRO-34. Proceedings. 34th
ACM/IEEE International Symposium on, 2001, pp. 90-101.

M. Pricopi and T. Mitra, “Bahurupi: A polymorphic heterogeneous multi-
core architecture,” ACM Trans.Archit.Code Optim., vol. 8, no. 4, pp. 22:1—
22:21, jan 2012. Available: http://doi.acm.org/10.1145/2086696.2086701

P. S. Ramrakhyani, “Dynamic pipeline scaling,” Master’s thesis,

2003, iD: NCSU1627499; Formats: Theses and Dissertations;
x, 57 p. ill.; M2: OCLC Number: 52407662; Includes
bibliographical references (p. 55-57).; Includes vita.; Thesis

(M.S.)-North Carolina State University. Available: http://www2.lib.ncsu.
edu/catalog/record/NCSU1627499;Getanonlineversion(NCSUonly)(http:
/Iwww.lib.ncsu.edu/resolver/1840.16/2106)

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI
5.1, Tech. Report HPL-2008-20, HP Labs, 2008.

T. A. Shah, “Fabmem: A multiported ram and cam compiler for
superscalar design space exploration,” Master’s thesis, 2010. Available:
http://repository.lib.ncsu.edu/ir/handle/1840.16/5999

J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.
Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, “Freepdk:
An open-source variation-aware design kit,” in Microelectronic Systems
Education, 2007. MSE’07. IEEE International Conference on. 1EEE,
2007, pp. 173-174.

D. Tarjan, M. Boyer, and K. Skadron, “Federation: Repurposing
scalar cores for out-of-order instruction issue,” in Proceedings
of the 45th Annual Design Automation Conference, ser. DAC ’08.
New York, NY, USA: ACM, 2008, pp. 772-775. Available:
http://doi.acm.org/10.1145/1391469.1391666

