
Project Part 3 – A Case for Cache-Core

Decoupling in CMP
Rangeen Basu Roy Chowdhury

Introduction

 Multi-threaded applications running on a chip multi-processor (CMP) exhibit different

types of communication patterns. In some applications, each core most frequently

communicates with its neighboring cores [2] leading to a lot of coherence traffic being exchanged

between these two entities. Examples of such applications are ocean_cp, lu_cb, blackscholes

and barnes from the Parsec and Splash2x benchmark suites. With stock MESI directory based

protocol, the directory acts as one level of indirection between the two neighboring cores.

Eliminating this extra indirection might reduce the runtime for these applications. Providing

direct connectivity between neighboring L1 caches is a way to eliminate this indirection.

In a chip multiprocessor, cores can be designed and floorplanned in a way to allow fast

connectivity between L1 caches of neighboring cores, essentially doubling the cache capacity

while using only a modest amount of extra logic. The caches still remain relatively simple and

only a few additional transient states are added to the coherence protocol. The

michroarchitecture is similar to Cache-Core Decoupling (CCD) proposed by Rotenberg et. al. [1].

While the original CCD mechanism tries avoid compulsory cache misses when a process

migrates to a neighboring core and primarily focusses on multiple single threaded workloads,

the approach can be generalized to increase cache capacity and reduce miss latency. The

original CCD also does not deal with coherence issues. Although CCD can be implemented in a

2D layout, 3D die stacking can result in a much more efficient f loorplan [1] and lower latencies for

cross-core cache accesses.

The goal of this project is to design the cache-core decoupling mechanism in the context

of a CMP that deals with multi-threaded applications and handles coherence issues correctly. If

implemented correctly, it is also possible to accelerate single threaded programs by effectively

increasing the L1 cache capacity of a core. If a core's neighbor is turned off or is idle, the

neighbor's cache can be used as an extension to the core's own cache.

Design
The floorplan of the two neighboring cores are done in such a way so that the L1 data

caches of the two cores are almost adjacent to each other. These two caches can then be

connected using low latency wires, through appropriate buffers if required. The pair of cores can

then be laid out in a mesh as a single entity thus creating a regular floorpaln for the entire CMP.

NICs can still be placed in the cores in such a way that the on chip network maintains its

regularity. Figure 1 gives a rough floorplan of the system. Using 3D stacked dies makes it even

easier to connect cores without the need for two different core floorplans. The cores that are

vertically aligned, can be connected using a large number of face-to-face wires. Rotenberg et.

al. present and analyze such layouts for 2D and 3D dies in [1].

 Each core in the pair can access the other core's caches on a miss in its own cache. The

core that initiates the request is called the primary core and its cache is called the primary

cache. The neighboring core in the pair is called the secondary core and its cache is called the

secondary cache. One can add an additional port in the secondary cache to process CCD

requests or the CCD requests and the primary cache's own requests can be multiplexed onto a

single cache port. In this project, a single port was used to service both CCD and primary

requests. The CCD requests were given higher priority in this project. The design was

implemented using the GEM5 full system simulator and evaluated using various parallel

benchmarks.

Figure 1: Rough floorplan of the CCD enabled CMP

GEM5 Implementation

 The CCD access paths were implemented using two new Message Buffers, one each for

CCD Request and Response. The SLICC compiler was modified slightly to set correct attributes

for these message buffers. The two buffers are CCDRequestFromNeighbor and

CCDResponseFromNeighbor. Each cache also contains a pointer to its neighbor's CCD buffers

for queuing requests and responses to these queues. The message buffers are connected

properly using the protocol python script. The primary cache controller initiates a CCD request,

which is processed by the secondary cache controller and a response is sent. The primary

cache controller then takes appropriate action once the response is received. Each message

buffer has a minimum 1 cycle latency to enqueue and each cache controller has a single cycle

response time resulting in a round trip latency of 4 cycles. This round trip latency can be

reduced with better microarchitectural design by using fall through queues instead. Such queue

must be implemented as Ruby does not provide one out of the box and can be undertaken as

future work.

Protocol Modifications

 Only one transient state was added in the L1 cache along with a few new message

types and events. These are explained in detail in the following tables. The primary cache

controller first checks for a cache hit in the primary cache and if the block is not present in the

primary cache, a CCD access to the secondary cache is initiated. A cache block is allocated to

hold the transient state NP_CCD while waiting for the CCD access to complete. If the CCD

access to the secondary cache completes successfully, the data is sent to the CPU sequencer

and the cache block is de-allocated. On the other hand, if the CCD access is unsuccessful, a

GETS request is issued to the memory hierarchy to bring the block into the cache.

Name Comment

CCD_LD_M

CCD_LD_E
CCD_LD_S

These requests are sent to the neighboring core when trying to access the

neighbor's cache. Since we already look up the state of the cache block in
the neighbor's cache (S, E or M), we send the appropriate request. When
the request is processed at the neighboring cache, if the state is still the

same, an Ack is sent back. Otherwise a Nack is sent.

CCD_ACK
CCD_NACK

These are responses sent from the neighboring cache to the requesting
cache to indicate a success or failure to read the correct data correctly from
the cache.

Table 1: New Message Types

State Description

NP_CCD This state is reached when a CCD Load request has been made to the
neighboring core and the state machine is waiting for the Ack/Nack to
come back before taking suitable action.

Table 2: New Transient state in L1 Cache Controller

Event Comment

CCD_Access On a load from the sequencer, the L1 cache controller looks up the tag

state of the cache line in both caches. In parallel to tag lookup, the cache
controller checks the tag array of the primary cache and if it misses in the
primary cache and the neighbor possibly has the line the appropriate state,
a CCD_Access event is generated. As a response a CC_LD request is

queued up in to the CCD queue.

(P.S: The protocol can be modified such that a lookup in the neighbor's tag

array is not necessary. A CCD access can be issued in parallel to a GETS
request and additional transient states can be used to complete the
requests correctly.)

CCD_Load_S
CCD_Load_E
CCD_Load_M

These events are a result of the secondary cache receiving a CCD_LD
request from its neighbor. Appropriate transitions happen and either an Ack
or a Nack is sent to the requesting cache.

CCD_Ack

CCD_Nack

These events are a result of response from the secondary cache.

Table 3: New Events in L1 Cache Controller

L1 State Event Action Next L1

State

NP/I CCD_Access Allocate cache block triggering a
replacement if necessary

 Send CCD_LD_* request to secondary
cache and wait for Ack/Nack

NP_CCD

NP_CCD CCD_Ack Send data to Sequencer (CPU) and

deallocate cache block

I

NP_CCD CCD_Nack Send GETS to fetch line from next level IS

S CCD_Load_S Send CCD ack along with data block to
requesting neighbor

S

E CCD_Load_E Send CCD_ACK along with data block
to requesting neighbor

E

M CCD_Load_M Send CCD_ACK along with data block

to requesting neighbor

M

Any
Other
State

CCD_Load_* Send CCD_NACK. If this situation
happens, it means the state of the
cache block has changed during the

course of CCD access.

Hold State

Table 4: New transitions in L1 Controller

Evaluation

 Four benchmarks shown in table 5 were chosen based on their observed communication

pattern as presented in [2]. Barnes, ocean_cp and lu_cb were evaluated with 16 processors

whereas blackscholes was evaluated with 8 processors as it didn't simulate correctly with 16

processors.

Benchmark Suite

Barnes Splash2x

Ocean_cp Splash2x

Lu_cb Splash2x

Blackscholes Parsec

Table 5: Benchmarks Used

 As shown in Table 6, three out of the four benchmarks got speedups. Lu had the

maximum speedup of 20% while Barnes had a speedup of only 1%. Looking at the L2 access

statistics in Figure 2, CCD reduced the number of L2 requests and thus reduced the miss

latency by a decent amount. Most completed CCD accesses have an issue to completion

latency of 4 - 5 cycles. Table 7 shows the number of various CCD related events for the

different benchmarks. Both clean and producer-consumer CCD accesses were made by the

benchmarks.

simulation cycles (ruby
cycles)

Base CCD Speedup

Barnes 621,246,302 613,380,752 1.01

Blackscholes 168,561,646 181,759,676 0.93

Ocean 601,240,835 540,691,344 1.11

Lu 312,552,730 263,690,909 1.19

Table 6: Simulation Cycles and Speedup

 Although the number of L2 accesses in case of Blackscholes were lower, it suffered from

larger number of L1 misses due to non-allocation of cache blocks in the L1 on a successful

CCD access. On a hit in the secondary cache, the line is not brought into the primary cache

from the memory hierarchy or from the secondary cache. This is clearly a design flaw and can

be easily solved by modifying the protocol to bring in a cache block that hit in the secondary

cache in parallel to the CCD access. This will lead to single cycle cache hits for future accesses

as opposed to 4 cycle CCD access.

 CCD Events Access Ack Nack Load_S Load_E Load_M

Barnes 58,590,940 58,590,907 33 57,819,753 144,347 626,807

Blackscholes 18,505,067 18,505,067 0 18,487,699 15,690 1,678

Ocean 9,044,181 9,044,164 17 8,806,481 100,086 137,597

Table 7: CCD Related Events. Most of the sharing is clean ('S' and 'E' states) although decent

amount of producer-consumer sharing ('M' state) is also observed. Very few of the CCD

requests were unsuccessful.

Figure 2: L2 accesses and misses normalized to the Base design. As expected, L2 accesses

have been significantly reduced.

 In conclusion, the CCD technique to reduce miss latency has good potential and with

careful microarchitecture and protocol design, a significant benefit can be achieved. With 3D

stacking, the latency of the CCD access can be reduced further leading to a even greater

speedups.

References

[1] Rotenberg, E.; Dwiel, B.H.; Forbes, E.; Zhenqian Zhang; Widialaksono, R.; Basu Roy

Chowdhury, R.; Tshibangu, N.; Lipa, S.; Davis, W.R.; Franzon, P.D., "Rationale for a 3D

heterogeneous multi-core processor," in Computer Design (ICCD), 2013 IEEE 31st International

Conference on , vol., no., pp.154-168, 6-9 Oct. 2013

[2] Barrow-Williams, N.; Fensch, C.; Moore, S., "A communication characterisation of Splash-2

and Parsec," in Workload Characterization, 2009. IISWC 2009. IEEE International Symposium

on, vol., no., pp.86-97, 4-6 Oct. 2009

doi: 10.1109/IISWC.2009.5306792

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Barnes Blackscholes Ocean

N
o

rm
a

lie
d

 to
 B

as
e

M
ES

I

L2 access (Normalized) L2 misses (Normalized)

