Physical Design of a 3D-Stacked Heterogeneous Multi-core Processor

W. Rhett Davis, Randy Widialaksono, Rangeen Basu Roy Chowdhury, Zhenqian Zhang, Joshua Schabel, Steve Lipa, Eric Rotenberg, Paul Franzon

Overview

- Motivation for 3D-IC HMP
- Physical Design Methodology
 - Floorplanning
 - Powerplanning
 - Face-to-face via to signal assignment
 - Cross-tier timing analysis
 - 3D-LVS, DRC
- Comparative Analysis: 2D vs. 3D
- Conclusion & Future Work

Overview

- Motivation for 3D-IC HMP
- Physical Design Methodology
 - Floorplanning
 - Powerplanning
 - Face-to-face via to signal assignment
 - Cross-tier timing analysis
 - 3D-LVS, DRC
- Comparative Analysis: 2D vs. 3D
- Conclusion & Future Work

Thread Migration in Heterogeneous Multi-core Processors

3D Integration Enables FTM and CCD

2D Implementation Challenges

- Wide inter-core interconnect consumes large amounts of routing resources
 - Mostly consumed by bus for communication between caches
- Low latency requirement
 - Using existing inter-core bus would not satisfy performance requirements
- Requires major floorplan changes to core
 - Register File and L1 Caches need to be placed at boundary, may conflict with intra-core timing requirements

Vertical interconnect in 3D integration enables shorter direct path between internal structures

NCSU 3D Processor Timeline: 2D Chip

- Mid-2011: Architecture/circuit design, RTL verification.
- May 2013: 2D prototype tape-out in IBM 8RF 130 nm

2D test chip for testing functionality of cores, thread transfer, and cache-core decoupling logic.

3D Stacked Design

• High performance 'big' core

• Low power 'little' core

Parameter	High-Performance	Low-Power	
	(Top Die)	(Bottom Die)	
Frontend Width	2	1	
Issue Width	3	3	
Pipeline Depth	9	9	
Issue Queue Size	32	16	
Physical Reg. File Size	96	64	
Load/Store Queue Size	16/16	16/16	
Reorder Buffer Size	64	32	
L1 I-Cache	private, 4 KB, 1-way, 8 B block, 1 cycle		
L1 D-Cache	private, 8 KB, 4-way	, 16 B block, 2 cycle	

• Process:

- GF 130 nm
- Ziptronix face-to-face bonding 8 micron via pitch
- 3 micron diameter
- MPW with Princeton Univ.

Overview

- Motivation for 3D-IC HMP
- Physical Design Methodology
 - Floorplanning
 - Powerplanning
 - Face-to-face via to signal assignment
 - Cross-tier timing analysis
 - 3D-LVS, DRC
- Comparative Analysis: 2D vs. 3D
- Conclusion & Future work

NC STATE UNIVERSITY

Physical Design Flow

- Flow begins with partitioned netlist, synthesized separately
- Followed by floorplanning, powerplanning, and placement of first tier
- Placement of the second tier depends on placement of first tier
- Second tier consists of 'small' core and is easier to converge

Custom tool/flow Developed in-house

Floorplan

(a) Top Die

(b) Bottom Die

Powerplan

- Robust power delivery network
 - Based on static IR drop analysis of 2D prototype
 - Wider power rings/stripes, more power stripes
 - Additional metal layers for power ring
- Maximize cross-tier power delivery through the F2F interface
 - Distance between power rings and stripes were multiples of the F2F via pitch
 - Ensures perfect alignment of F2F vias and power stripes
- A custom "power via stack" cell connects F2F bonds with power grid

Maximum current draw for a FabScalar core: **154.17 mA** (**185 mW / 1.2 V**) Current carrying capacity through the 30,796 power vias: **3,880.29 mA**

Face-to-face Via Assignment

- First priority is to assign F2F vias for power delivery
 - Every F2F via located above power stripes were allocated for power
 - Exclude vias located above memory macros
- Inter-tier signals were assigned using a greedy nearest-neighbor algorithm as a heuristic to optimal assignment
- Nearest-neighbor query speed-up with k-d tree structure [7], implemented with Scientific Python (SciPy) library

Face-to-face Via Assignment

- The main information to the assignment problem are:
 - Pin locations/Cell placement of inter-tier signal sink/source
 - 3D (F2F) via locations
- Possible enhancements to the assignment algorithm:
 - Congestion awareness [Neela, 3D-IC '14] (our approach was to exclude vias in congested regions)
 - Timing slack awareness for prioritizing timing critical nets [8]

Cross-tier Timing Analysis

- Each core operates with its own independent clock
 - Except during thread migration: synchronous state transfer between Teleport Register File
- Clock forwarding means inter-tier timing synchronization
 - Need to consider process variations across wafers (wafer-to-wafer stacking)
- Post layout timing analysis using PrimeTime
 - Two dies wrapped into a single system
 - Analyzed cross-tier paths, the two dies at opposite timing corners
- Performed manual hold timing fixes through ECO

Physical Verification: 3D-LVS, DRC

- 3D LVS verifies inter-tier signal assignment
 - Connectivity verification was necessary due to manual, post place/route changes for DRC cleanup and timing ECO
 - DRC cleanup includes adding more antenna diodes
 - Automated insertion was performed during place and route
 - Post P&R antenna violations occur on a handful of long wires
- 3D DRC, developed custom Calibre rules to verify:
 - Top metal layer consists of F2F via grid shapes with correct dimension, offset, and pitch
 - Correct dimensions of every shape in TSV related layers

Overview

- Motivation for 3D-IC HMP
- Physical Design Methodology
 - Floorplanning
 - Powerplanning
 - Face-to-face via to signal assignment
 - Cross-tier timing analysis
 - 3D-LVS, DRC
- Comparative Analysis: 2D vs. 3D
- Conclusion & Future work

NC STATE UNIVERSITY

2D vs 3D Register File Layout

- Heavy routing congestion shown in routing inter-core signals out from the partition to the right edge
- This routing congestion increases power consumption and area
- Wide bus signals are prone to cross talk
- Exacerbated by distance between inter-core structures

Comparative analysis: 2D Floorplans

2D-Inter: floorplan optimized for inter-core structures

2D-Intra: floorplan from a 3D tier, optimized for intra-core timing

Average Wirelength Comparison

- Overall 3D wirelength benefits:
 - 8.8%,18% vs 2D-inter, 2D-intra
- Average wirelength of TRF inter-tier signals reduced by
 - ~1 mm vs 2D-inter
 - 2D-inter requires more area/routing resources for DRC clean design due to congestion and crosstalk.
- Further leverage available
 F2F vias by enabling intercore state transfer features to more core structures (e.g. branch target buffer, map tables).
 - F2F via utilization of 3D chip at 25% in core area (21% for power delivery).

CCD Path Delay Comparison

Path delays of inter-core cache datapaths (ns)

- With a target clock cycle period of 15 ns, using 3D yields ~ 5 ns lower path delay.
- Comparison between 2D-intra with/without signal integrity analysis shows crosstalk effects in a 2D implementation

Impact of Vertical Interconnect on Routing Congestion

						-
				×		_
						_
	8 8 8 8 8 8 8			8		_
						_
$\boxtimes \boxtimes$						_
88	3 12 12 12 12 12 12 12		1 2 3 3 3 3 3 4 5 3 7 8 3	8		_
🖾 🖾 I		×				_
88		- 2	88888888888			
22						_
88		×	888888888888	8	88888888888	- 🖾
88	8888888					
88	888888	8	_ <u>8</u> 8 8 8 8 8 8 8 8 8 8			
88	2 12 12 12 12 12 12 12 12 12 12 12 12 12	8		8	888888888888	
🖾 🖾 I	8 🛛 🖓 🖓 🖾 🖾 🖄 🚽	×	<u> </u>	₩	<u> </u>	- 🖂
88	8888888					- 🖾
		8				
		×		X		
			888888888888			
88		8				
				8		- 123
		×		1		
						- 🛛
	8 12 12 12 12 12 12 12 12 12 12 12 12 12	Ø		8		
88		8		- 🛛		-
		8		8		8
× Cont						
81 B(Ø		Ø		×
		8		Ø		8

- Vertical via stacks could cause routing congestion, since it consumes routing resources from the bottom to the top layer.
- Learnings:
 - Monitor cell density and via assignment for routability. Look for routing detours as shown during timing closure.
 - Analyze the cell placement of inter-tier signals source/sink. Not every fan-out cell can be clustered near the via, they may be spread out due to internal timing constraints.
 - Consider both area and routing impact of antenna diode insertion, such as by allocating more area for the partition.

Wirelength Benefits of Finer F2F Via Pitch

Fig. 4. Impact of face-to-face via pitch on wirelength of *Teleport Register File* inter-tier signals.

Overview

- Motivation for 3D-IC HMP
- Physical Design Methodology
 - Floorplanning
 - Powerplanning
 - Face-to-face via to signal assignment
 - Cross-tier timing analysis
 - 3D-LVS, DRC
- Comparative Analysis: 2D vs. 3D
- Conclusion & Future Work

Conclusion

- 3D integration mitigates competing interest between internal and inter-core timing constraints
- 3D integration can reduce total/average wirelength, but may introduce routing congestion due to the routing resources consumed by vertical via stacks.
- Antenna/ESD diodes for face-to-face vias incurs area and routing overhead. These diodes may increase load capacitance, and system power consumption.
- Observed diminishing return of wirelength reduction on finer F2F via pitch.

Future Work

- 3D-IC EDA tool development for 3D power delivery network, physical verification
- Static timing analysis tool support to conduct inter-tier timing analysis and cross-tier timing ECO
- Model to help determine ideal F2F via pitch based on design parameters (e.g. connectivity, standard cell size)
- Enhancing inter-tier signal-via assignment by exploring/combining heuristics (total wirelength, congestion, timing)

References

[1] E. Rotenberg, B. H. Dwiel, E. Forbes, Z. Zhang, R. Widialaksono, R. B. R. Chowdhury, N. Tshibangu, S. Lipa, W. R. Davis, and P. D. Franzon, "Rationale for a 3d heterogeneous multi-core processor," in Computer Design (ICCD), 2013 IEEE 31st International Conference on, pp. 154–168, 2013. ID: 1.

[2] E. Forbes, Z. Zhang, R. Widialaksono, B. Dwiel, R. B. R. Chowdhury, V. Srinivasan, S. Lipa, E. Rotenberg, W. R. Davis, and P. D. Franzon, "Under 100-cycle thread migration latency in a single-isa heterogeneous multi-core processor," in 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–1, Aug 2015.

[3] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi, B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg, "FabScalar: Composing Synthesizable RTL Designs of Arbitrary Cores Within a Canonical Superscalar Template," in Proceedings of the 38th Annual International Symposium on Computer Architecture, ISCA-38, pp. 11–22, June 2011.

[4] P. Enquist, "Scalable direct bond technology and applications driving adoption," in 3D Systems Integration Conference (3DIC), 2011 IEEE International, pp. 1–5, Jan 2012.

[5] D. Chapman, "Diram architecture overview," Tezzaron Semiconductors, 2014.

[6] V. Srinivasan, "Phase ii implementation and verification of the h3 processor," Master's thesis, North Carolina State University, 2015.

[7] R. Widialaksono, W. Zhao, W. R. Davis, and P. Franzon, "Leveraging 3d-ic for on-chip timing uncertainty measurements," in 3D SystemsIntegration Conference (3DIC), 2014 International, pp. 1–4, Dec 2014.

[8] R. Widialaksono, Three-Dimensional Integration of Heterogeneous Multi- Core Processors. PhD thesis, North Carolina State University, Raleigh, June 2016.

[9] Z. Zhang and P. Franzon, "Tsv-based, modular and collision detectable face-to-back shared bus design," in 3D Systems Integration Conference (3DIC), 2013 IEEE International, pp. 1–5, Oct 2013.

[10] Z. Zhang, Design of On-chip Bus of Heterogeneous 3DIC Micro-processors. PhD thesis, North Carolina State University, Raleigh, June 2016.

[11] G. Neela and J. Draper, "Techniques for assigning inter-tier signals to bondpoints in a face-to-face bonded 3DIC," in 3D Systems Integration Conference (3DIC), 2013 IEEE International, 2013, pp. 1–6.

Q & A

Physical Design Metrics				
Die Dimensions	3.92 mm x 3.92 mm			
Core Area per die	$9.57 \ mm^2$			
Standard Cells (top die)	886,361			
Standard Cells (bottom die)	678,854			
Memory macros	34			
Nets (top die)	482,479			
Nets (bottom die)	328,535			
Average net length (top die)	$64.6 \ \mu m$			
Average net length (bottom die)	66.9 μm			
Inter-tier F2F signal nets	6,077			
Inter-tier power vias	30,796			
Average F2F net length (top die)	$86 \ \mu m$			
Average F2F net length (bottom die)	140.3 μm			

- 3D-IC cost
 - Engineering effort
 - 3D clock distribution, power, thermal issues, design for test
 - Develop new design automation tools/flows

Register File

Architectural RF and Teleport RF placement were adjacent

Subsequently called PRF

Detailed 3D–IC flow for multiple experiments

