
A Case for Standard-Cell Based RAMs in Highly-Ported Superscalar
Processor Structures

Sungkwan Ku1*, Elliott Forbes2, Rangeen Basu Roy Chowdhury3, Eric Rotenberg1,4

INorth Carolina State University, 890 Oval Drive, Raleigh, NC USA
2University of Wisconsin - La Crosse, 1725 State St, La Crosse, WI USA

3Intel, 2200 Mission College Blvd, Santa Clara, CA USA
4Qualcomm, 8041 Arco Corporate Dr, Raleigh, NC USA

*E-mail: sku2@ncsu.edu

Abstract- Highly-ported memories are pervasive
within superscalar processors. Accordingly, they have been
targets for full-custom design using multi-ported versions of
the 6T SRAM bitcell. Unfortunately, full-custom design of
highly-ported memories is becoming exceedingly difficult
in deep sub-micron technologies. This paper makes the
case for implementing highly-ported memories with stan­
dard cells (flip-flops, muxes, clock buffers). In lieu of ex­
otic peripheral circuits for each port, standard-cell SRAMs
use muxes. Consequently, area differences between full­
custom and standard-cell designs are greatly reduced at a
high number of ports. To also compete with full-custom
memories in terms of timing and power, we introduce a
standard-cell memory compiler with three key features: (i)
per-row clock gating, (ii) a new tri-state based mux stan­
dard cell, and (iii) a modular layout strategy, which is the
centerpiece of the memory compiler. For a 16-read/8-write
128-entry register file, our modular standard-cell memory
consumes 13% more area and 4% more power, and is 35%
faster, than the custom memory produced by FabMem.
The automatic (built-in) robustness of standard cell de­
signs further weigh in their favor, contrasted with exquisite
transistor sizing/tuning of intertwined sub-circuits in a full­
custom design.

Keywords- Standard-Cell, RAM, Memory Compiler,
Superscalar

1. Introduction

The demand for higher performance in computing has
led to the adoption of superscalar execution in all tiers
of computing, including mobile computing and application
processors. As instruction fetch width and the number
of parallel execution lanes increase, superscalar memory
structures (e.g., physical register file, reorder buffer, sched­
uler, rename tables, etc.) require correspondingly more
ports. Because of the importance of highly-ported mem­
ories to core area, performance, and energy consumption,
traditionally, they have been targets for full-custom de­
sign using multi-ported versions of the 6T SRAM bitcell.
Full-custom design of highly-ported memories is becoming
exceedingly difficult, however. The design effort to reliably
handle PVT variations and narrow noise margins at low
operating voltages is challenging for deep sub-micron tech­
nology [2], [3]. This is true for single-ported 6T SRAM, and
is even more challenging when designing an efficient and re-

978-1-5090-5404-6/17/$31.00 ©2017 IEEE 131

liable twelve-ported register file (eight read and four write
ports) required for a 4-way superscalar core. Microarchi­
tectural alternatives, such as replication [5], [6] or banking
of fewer-ported memories, have efficiency or performance
drawbacks, respectively.

This paper makes the case for standard-cell based
SRAMs (flip-flops, muxes, clock buffers) as the solution
to the problem of highly-ported deep-submicron memo­
ries. In lieu of exotic peripheral circuits for each port (bit­
line precharge, sense amps, etc.), standard-cell SRAMs use
muxes. Consequently, we observe that the area difference
between full-custom and standard-cell memories is greatly
reduced at a high number of ports. To also compete with
full-custom memories in terms of timing and power, we in­
troduce a standard-cell memory compiler with three key
features.

l. Per-row clock gating reduces both clock power and
switching inside the D flip-flops.
2. A new tri-state buffer based mux cell is added to the
standard cell library. Employing it reduces total routing
and further reduces switching inside the D flip-flops. The
new mux cell presents the memory compiler with another
choice for optimizing timing and power.
3. A modular layout strategy reduces total routing. A lay­
out is generated for a smaller building block. A block's lay­
out is made efficient by careful floorplanning. The modular
layout allows stacking multiple blocks in series to compose
the overall memory.

Our standard-cell memory compiler provides an easy in­
terface for designers to explore the characteristics of highly­
ported SRAMs, in which the full-custom memory faces
challenges of reliability and high verification effort. The
automatic (built-in) robustness of standard cell designs fur­
ther weigh in their favor, contrasted with exquisite tran­
sistor sizing/tuning of intertwined sub-circuits in a full­
custom design.

We compare area, timing, and power of layouts of
our standard-cell memories and full-custom memories gen­
erated by the FabMem highly-ported RAM/CAM com­
piler [7]. Even though FabMem is not a commercially avail­
able tool, the tool adequately evaluates the fundamental
structures of highly optimized multi-ported bitcell, bit line
precharge, sense amplifier, and dynamic logic decoder that
are designed and verified by Shah [7] using the FreePDK
45nm [8] process design kit.

18th Int'l Symposium on Quality Electronic Design

250000 XrXw 32(Width) x 128(Depth) 2XrXw 32(Width) x 128(Depth)

200000 I:: ~:bMeml

O'lhw 2r2w 3r3w 4r4w 5r5w 6r6w 7r7w BrBw 2rlw 4r2w 6r3w Br4w 10r5w12r6w14r7w16rBw

Fig. 1. Pre-layout area and cycle time comparison of FabMem gener­
ated RAMs and synthesized flip-flop based RAMs (X read/ X write).

II. Motivation and Contributions

We begin by exploring the area, cycle time, and energy
costs of adding ports in two different multi-ported SRAM
implementation styles: full-custom (6T SRAM, scaled-up
for multiple ports) versus fully synthesized (D flip-flop
based). We consider a fixed size of 128 32-bit words (i.e.,
the SRAM's dimensions are 128 deep by 32 wide) and
vary the number of ports from 2 ports (Irl w) to 24 ports
(16r8w).

For every port combination, FabMem uses a custom de­
signed bit cell that achieves the optimum characteristics.
Different circuit level decisions were made for different bit­
cells in the FabMem library. FabMem uses a built-in esti­
mation tool to explore different array organization options
for a specified SRAM size.

Figure 1 compares area and timing of the FabMem­
generated (labeled FabMem) and synthesized (labeled FF,
for flip-flop) designs. The graphs on the left of Figure 1
consider X read ports and X write ports (XrXw), varying
X. And the right graphs compare 2X read ports and X write
ports (2XrXw). Area estimates of synthesized designs in­
clude cell area and estimated wire area from the pre-layout
synthesis report.

The area of the lr 1 w FabMem bit cell (8 transistors,
two wordlines, two bitlines) is 2.544 fLm 2 , com pared to
4.522 fLm2 for the 29-transistor D flip-flop. For lrlw, the
total estimated area shows the synthesized design is 4.8
times larger than the FabMem design. However, the syn­
thesized design is 1.62 times larger than FabMem for 8r8w
and only 1.2 times larger for 16r8w. The area of the 8r8w
FabMem bit cell (36 transistors, 16 wordlines, 16 bit lines) is
19.668 fLm2 . While the size of the D flip-flop is unchanged,
more mux cells are added for each additional port.

The FabMem bitline length increases linearly with the
number of ports (via the wordlines), increasing read la­
tency. If we divide the bit cell array in half (along the length
of the bit line) and apply column muxing, read latency may
be reduced. FabMem automatically recommends a degree
of column muxing that minimizes read latency. As can be

0.8

0.6

0.4

2r2w 3r3w 4r4w 5r5w 6r6w 7r7w 8r8w
Ports

Fig. 2. Pre-layout energy comparison of FabMem generated RAMs
and synthesized flip-flop based RAMs (X read/X write).

seen in the lower right graph of Figure 1, timing is greatly
improved for FabMem 12r6w, owing to column muxing.
In general, FabMem is faster than FF. However, a full­
custom design requires careful static noise margin (SNM)
simulation while the synthesized flip-flop design can take
advantage of Electronic Design Automation (EDA) tools
for static timing analysis.

For a fair comparison of energy consumption, we con­
verted the synthesized gate-level net list to the transistor­
level SPICE netlist, so that both the FabMem and FF de­
signs could be simulated with Synopsys HSPICE. FabMem
generates a full SPICE net list in addition to the layout.
Note, we reduced the memory depth to 16 instead of 128
to reduce simulation time. The same test vectors were ap­
plied to the read and write ports of both designs over four
clock cycles. Energy is shown in Figure 2. FabMem ac­
tually consumes more energy than FF for more than four
ports (they break even for 2r2w). The percentage of en­
ergy consumed by precharge and sense amplifier circuits
increases from 53.1% for lrlw to 72.5% for 8r8w. With
more ports, the bit lines are longer and consume more en­
ergy for FabMem, whereas more energy is consumed in the
additional mux cells for the synthesized design.

These experiments show that for a high number of ports,
there is an opportunity for a synthesized SRAM design
to achieve performance and area close to that of a full­
custom SRAM, with better energy consumption. Given
that the full-custom SRAM requires high design effort, we
can consider building highly-ported SRAMs by leveraging
design automation. Moreover, synthesized SRAMs have
the advantage of being very portable. When a design is
ported to a new process, the flip-flop based SRAMs can be
easily re-synthesized without the need for involved physical
design of full-custom SRAMs. The main contributions of
this paper are as follows:
i. We identify the important trend that for higher number
of ports, synthesized flip-flop based SRAMs become very
competitive to custom designed SRAMs.
ii. We propose an automatic standard-cell based memory
compiler using hierarchical design automation in order to
reduce the design and verification effort of fully synthesized
multi-ported SRAMs.
iii. We compare area, timing, and power of layouts of our
standard-cell memories with FabMem generated custom
memories.

III. Challenges for Flip-Flop Based Designs

The challenge in synthesized flip-flop based SRAMs lies
in creating a competitive physical layout. Placing and rout­
ing a large number of standard cells using automatic place
and route tools results in a wide variation in area utiliza­
tion. This is due to the unpredictability of placement al­
gorithms. We found two bottlenecks when routing synthe­
sized flip-flop SRAM designs.

First, placing flip-flops and multiplexer cells together is
challenging. On one hand, wordline flip-flops should be
placed as close together as possible to minimize clock skew
and read timing. However, the group of muxes need to be
placed in different rows to minimize spanning wires to stor­
age cells. These opposing constraints force CAD tools to
spread flip-flops and muxes to be able to completely route
nets lowering area utilization and increasing wire delay.

Second, with an increase in SRAM size and port num­
bers, the design effort to route cells and insert clock
buffers/repeaters is increased. With additional cells, the
design effort to meet target area and timing constraints
requires iterative optimization to tune clock buffers and
repeaters.

To obtain a layout of a synthesized SRAM that is com­
petitive with a custom designed SRAM in terms of power,
timing and area, we discuss three key optimizations that
make the design more efficient and amenable to automatic
place and route.

A. Clock gating

In a synthesized flip-flop array, to retain values, the out­
put of each flip-flop is fed back to its input. To change the
value, a mux is inserted at the input to select between the
new value and the feedback value. A common optimiza­
tion is to eliminate the mux and feedback path and clock
gate the word line. Our standard cell library includes a
3.19211-m2 clock gating cell, which allows us the opportu­
nity to employ this alternative.

B. Custom Mux Cell

Our approach requires adding a large number of multi­
plexers to the flip-flop arrays. For each read/write data,
there is an existing path to access each word line, which
requires multiple stages of mux cells. Additional ports lin­
early increase the number of multiplexers, which increases
the wire length and delay. For higher efficiency, we created
new large input multiplexer standard cells to reduce rout­
ing congestion of complex data paths. Our custom n-to-l
multiplexer cell uses tri-state inverters.

For 8 write ports, an 8-to-l mux standard cell was im­
plemented to route a write data bit from 8 write ports to a
flip-flop 'D' input. Figure 3 shows the schematic and layout
of the new 8-to-l mux cell. Write conflicts from different
write ports are avoided architecturally.

For 8 read ports with 128 rows of SRAM memory, each
read data port needs to choose a bit from the total num­
ber of rows of the SRAM memory; this would require a
128-to-l mux. In this case, we divide the 128 rows into 8

Fig. 3. Schematic and layout of the custom designed for 8-input mux
cell.

modules (i.e., each module has 16 rows of the SRAM mem­
ory) so that one 16-to-l mux cell or two 8-to-l mux cells
can be used in each divided module. The new custom n­
to-l multiplexer cell is characterized by Encounter Library
Characterizer verso vI3.10.

C. Modular Design

To further aid the CAD tools in automated placement
and routing of a flip-flop based SRAM, we propose a struc­
tured reusable block based design. A block, called a RAM
module, includes a flip-flop storage array and associated
decode and muxing logic for read and write ports. Mul­
tiple of these RAM modules can then be stacked to build
larger multi-ported SRAMs. Each read/write port selects
a RAM module and unselected RAM modules are used
as bypass buffers. Appropriate placement constraints are
used to guide the CAD tools. The modularity of the de­
sign is maintained throughout the design flow to reduce
the physical design effort by making placement and rout­
ing somewhat deterministic. This helps generate a layout
that is more efficient in terms of area than a completely un­
constrained and unstructured synthesized SRAM design.

Figure 4 (a) shows the block diagram of a 8r/8w RAM
module. On the read side, the module has 8 read address
input ports and 8 data outputs. Muxes choose between
data from outputs of flip-flops in the same RAM module
or from another RAM module. Common logic and wires
can be shared within a RAM module and between RAM
modules. One such example are the read addresses that
are connected to other RAM modules using just repeaters.
On the write side, 8 write address and 8 data are shared
across RAM modules. Only the selected RAM module for
each write port decodes the corresponding write address
and generates a clock enable signal to update the write
data.

IV. Modular SRAM Compiler

To simplify the design and analysis of flip-flop based
SRAMs and to make them more usable, we created a "Mod­
ular SRAM Compiler". The compiler consists of three main
tools (flows):

• A net list generator script that generates the modular
SRAM netlist as per the dimensions and the number of
ports specified by the user.

• A layout flow that creates a layout of the SRAM using a
hierarchical layout flow and generates a G DS and LEF file
for use with standard EDA tools.
• A characterization and library generation flow that gen­
erates a Liberty library (LIB file) for the SRAM that can be
used in standard ASIC flows for timing and power analysis.

A. Netlist generator

Given an RTL design of the SRAM, synthesis tools can
automatically synthesize a gate-level net list for the SRAM
and optimize it to meet a specified target frequency con­
straint. However, the exact implementation of the gate­
level net list varies from one synthesis run to the next and
this inconsistency creates challenges for automated place
and route of the generated gate-level netlists. Physical
design of such net lists is extremely tedious and requires
manual floorplanning to get the best results. To obviate
the need for manual floorplanning and to remove inconsis­
tencies in the gate-level netlist, we created a parametrized
net list generator in Perl to directly compose a gate-level
net list for a reusable RAM module. Along with the netlist,
the script also generates timing constraints for optimiza­
tion and placement constraints for deterministic routing
to aid in automated routing of the large number of wires.
These constraints are then used to perform post-synthesis
optimizations of the RAM module using our synthesis tool.
The tool inserts buffers and adjusts cell sizes to meet timing
requirements.

The net list generator script also generates a top-level
wrapper net list for the required SRAM using a modu­
lar approach. The previously generated RAM module is
treated as a black box cell and instantiated as many times
as needed to compose the required SRAM. The top-level
wrapper net list includes extra decoding logic to enable the
corresponding RAM module for each read/write port. The
final SRAM top-level wrapper net list and the associated
constraints then feed into the hierarchical layout flow.

B. Hierarchical Layout

In order to maximize reuse and mlmmize SRAM gen­
eration time, we use a hierarchical layout approach. A
reusable RAM module is placed and routed first. The
optimized RAM module net list and associated placement
constraints are used for this first pass. The placement con­
straints guarantee accurate placement of pins, so they line
up perfectly when multiple RAM modules are stacked on
top of each other to create the required SRAM dimen­
sion. This allows for the most efficient use of area in the
final SRAM layout. The completed RAM module layout is
then streamed into Cadence Virtuoso™and the Cadence
Abstract ™tool to generate a LEF file. The first pass gen­
erates a post-layout netlist, and LEF and GDS files for
the RAM module. These are used as libraries in the sec­
ond pass of the flow to layout the final SRAM. The effort
required for the second phase is minimal as it involves plac­
ing and routing the combinational logic stitching the RAM
modules together. Similar to the first pass, the second pass

Top Pin Group

bypass_ datoOwr_ 0[31..-0] bypass_ addrOwr_i[2;O] bypass_ addrO_i[2.-0]
bypass_dotolwr_o{31'O] bypass_oddr1 wr_i[2:0} bypass_ addrl_i{2,O}

bypass_ data 7wr_ 0[31.-0] bypass_ addr7wr_i[2;OJ bypass_ addr7_i[2.-0]

Pin Group

dataOwr ;[31.;0] addrOwr ;[2.-0J
datalwr~J{31:0] addrlwr~J{2'OJ

dato7wr_i[3J.;O] addr7wr_i[2.-0]

Bottom Pin Group

addrO i[2.-0]
addri~J{2'O]

dataQ 0[31.-0]
datai~o[31'O]

Right
Pin Group

se leccrd_portO_i
se leccrd_portl_i

prevO_data_i [31..-0]
prevl_dato_i {3J..-O]

(a) Block diagram and pin layout of a reusable block design

(b) Initial floorplan (pre-route) ofa modular SRAM (c) Completely routed layout

Fig. 4. Example of a modular SRAM layout.

generates a post-layout netlist, a LEF and a GDS file for
the entire SRAM.

Figure 4 (b) shows the initial floorplan of a 32-entry by
32-wide SRAM with 8r8w ports using this modular-driven
approach. The place and route tool can stack four modules
from bottom to top and place selection decoder cells outside
of the stacked area. The routing effort is just in wiring the
module selection decoder cells to each module. Figure 4
(c) shows the completed layout. We observed the total
wire length to route modules to be greatly reduced.

C. Library Generation

The final process is to get a Liberty library (LIB file) for
the generated SRAM design. We use Synopsys Prime Time
to analyze the timing and power for the completed layout.
In order to populate the LIB file, static timing analysis is
run on the post place and route netlist. Parasitic informa­
tion extracted from the layout as a SPEF file is used by the
timing analysis flow. For power analysis, gate level simula­
tion is performed on the routed net list to get the activity
file in Value Change Dump format (VCD). Using this VCD,
extracted SPEF, and the routed netlist, we measure power
for read/write accesses to the SRAM. The library genera­
tor script uses these results to populate a Liberty template
to create a final LIB file for the generated SRAM.

V. Experimental Methodology

In order to evaluate the effectiveness of our modular
SRAM design, we compare to fully synthesized designs
(baseline) and to FabMem compiled designs for various
sizes of SRAMs. The bas~line designs use an automated
CAD tool flow for synthesis, placement and routing under
the tightest possible timing constraints. In the baseline de­
signs, we vary the area utilization constraint to meet the

timing requirements and to fully route the design.
For our design exploration, we vary the number of ports

and SRAM sizes. The bit storage type is either flip-flop
based or 6T bit cell (cross-coupled inverter) based. The
mux type is a choice between static CMOS mux, tri-state
style mux, and dynamic logic based mux. The designs we
evaluate have LVSjDRC clean layouts. To analyze tim­
ing and power of the baseline and modular designs, we use
Synopsys Prime Time PX TM. We use extracted para­
sitic information from the layouts (SPEF) as well as value
change dump (VCD) from gate-level simulations for the
Prime Time flows. To obtain timing and power for Fab­
Mem generated designs, we use extracted parasitic infor­
mation from the layouts (PEX) and run transistor-level
SPICE simulations.

VI. Results

In this section, we perform a sensitivity study of our
Modular SRAM compiler to understand the impact of the
various optimizations and evaluate different SRAM imple­
mentation styles for various sizes and ports. We also use
our Modular SRAM compiler in case study with a 8-way
supersclar out-of-order processor.

A. Sensitivity Study

To study the impact of the various optimizations per­
formed by the Modular SRAM compiler, we perform a
sensitivity analysis of highly-ported SRAMs, which are our
primary regime of interest. We first study the impact of
clock-gating and the custom mux cell. Figure 5 shows the
area, cycle time, and power impact of introducing clock­
gating and using the new mux cell. In this case we use a
32(W)x32(D) memory with 16r8w ports. The baseline de­
sign is an automated place-and-route design with no cus­
tom mux cells or clock-gating. The bar labeled M-1 shows
the impact that clock-gating alone has when applied to a
baseline SRAM. M-2 bar also uses clock-gating but addi­
tionally allows the use of the custom mux cell. Compared
to both the baseline and to FabMem designs, clock-gating
alone (M-1) can save area and power, but comes at the ex­
pense of an increase cycle time. The impact on timing is
due to the clock buffer placement and routing of the clock
tree. However, by introducing the new mux cell (M-2),
area, cycle time, and power are all improved compared to
both the baseline and FabMem designs. The main sources
of improvement are in the reduced wire length and the re­
duced switching activity.

Since a SRAM can be partitioned into modules in many
different ways, in our second study, we study the impact
of module granularity, i.e. the number of blocks (modules)
in a modular SRAM. These studies do not use the custom
mux cell but uses clock-gating. Figure 6 shows the result
for a 32(W)x128(D) SRAM with 8r8w ports. The baseline
does not use the modular approach. B-2, B-4, B-8, and
B-16 refer to the number of blocks: 2, 4, 8, and 16 blocks
respectively in a modular SRAM. Increasing the number of
blocks improves the area of the modular design compared

50000 1.2 0.040

0.035

40000
1.0

0.030

0.8
~O.O25

30000 ~
0.' ffi 0.020

~
20000 0

c.. 0.015
0.4

O.OlD
10000

0.2
0.005

FabMem M-l M-2 FabMem M-l M-2

Fig_ 5_ Impact of clock-gating and custom mux celL

120000

100000

~ 80000

i 60000

40000

3.0

2.5

1.0

~
!0.06

0.04

Fig. 6. Impact of module granularity(number of blocks) in a modular
SRAM.

to the baseline - approaching that of the FabMem design.
Power is not impacted much by using more blocks, but a
large cycle time impact is noted when using 16 blocks. This
is due to serialization of the read paths from stacking the
blocks on top of each other, which increases the wire length
and hence, the critical path.

The module granularity has an area and timing trade­
off. The clock gating has a timing and power trade-off. The
custom mux cell shows impact on power saving. The area,
timing, and power of a SRAM depends on a combination
of these features. The tool explores all features to arrive
at best solution for a given SRAM dimension.

B. Perforamnce, Power, and Area

B.1 Area

Area comparisons are shown in Figure 7 (a). When com­
pared to the Baseline designs, the area of the Modular
designs are comparable or slightly better than the Base­
line area for all sizes and ports. We observed that Mod­
ular designs can achieve even better area if we reduce the
block size, which increases the number of stacked blocks. In
that case, place-and-route achieves higher utilization with
a smaller partition, and hence a higher overall utilization.
However, the block size presents a trade-off between area
and timing because stacking more blocks in series increases
the critical path delay.

When comparing our Modular design to the equivalent
FabMem design, we find that the percent of area overhead
of the Modular design decreases as the number of ports
increases. Furthermore, there is a cross-over point where
the area of the Modular design is lower than the area of
the FabMem design. As the RAM size is increased, this
cross-over point occurs at a higher number of ports. This
is evident in the graph for the smallest RAM (cross-over

at 8r4w) and medium-sized RAM (cross-over at 16r8w).
For the largest RAM, the cross-over point is beyond the
maximum number of ports considered, but the area gap is
small - just 13% more area.

B.2 Timing

Timing comparisons are shown in Figure 7 (b). As the
RAM size increases, the cycle time advantage of FabMem
decreases with respect to both the Modular and the Base­
line designs. Modular designs have better timing than
Baseline designs for most datapoints, and have significantly
better timing for the largest RAM with 8r4w, 8r8w, and
16r8w ports (the most complex).

The large RAM with 8r4w, 8r8w, and 16r8w ports are
key design points, and the Modular designs outperforms
FabMem for these RAMs. This cross-over coincides with
a discontinuity - the Modular design cycle time decreases
from 4r4w to 8r4w ports. This has to do with using either
our tri-state mux cells (for lrlw through 4r4w) or existing
mux cells (for 8r4w, 8r8w, 16r8w), whichever is best for
timing. For the large RAM and highest number of ports,
the tri-state mux cell presents a trade-off between timing
and power. The isolated "X" datapoints in the bottom
graphs of Figure 7 (b) and Figure 7 (c) illustrate this trade­
off. These datapoints are for the large RAM with 8r4w and
8r8w ports, using the tri-state mux cell instead of the ex­
isting mux cell. Using the tri-state mux cell reduces power
at the expense of timing in these Modular designs.

B.3 Power

Power comparisons are shown in Figure 7 (c). Power in­
cludes both static and dynamic power. Modular and Base­
line designs are fairly comparable in area and timing, owing
to their common basis in standard cells. However the Mod­
ular design optimizations clearly payoff in terms of power.
The sources of power savings are in the gated clocks of D
flip-flops, the tri-state data muxes, and minimized routing
wires.

The power of Modular designs is always better than
FabMem designs. FabMem uses dynamic logic, including
the address decoders and bit line precharge/sense circuitry.
This is to be competitive in timing, but comes at the ex­
pense of power. However FabMem does become increas­
ingly competitive in power as the RAM size increases. In
particular, FabMem and Modular designs have compara­
ble power for the large RAM, and have equal power for the
large RAM with 16r8w ports.

C. Case Study: 8-way superscalar processor

To study the effectiveness of our Modular SRAM Com­
piler, we used it to generate SRAMs for an 8-way su­
perscalar out-of-order processor. The superscalar proces­
sor was generated using the AnyCore toolset [4]. Out-of­
order superscalar processor designs tend to use many highly
multi-ported SRAMs in their pipelines. From the various
SRAMs used by the generated design, we selected only
the relatively large highly-ported SRAMs for this study.

TABLE I

HIGHLY-PORTED MEMORIES USED IN OUR 8-WAY SUPERSCALAR

PROCESSOR. AREA IS IN SQ. MM, CYCLE TIME IS IN NS, AND POWER

IS IN MVV.

I IlAM Name I Dimensions I l\·IcaSllI'Clllcnt I FabMcm I Baseline I Modularl

:12(W)x128(D) Area 0.178 0.205 0.201
Phy. Regil:lter File 16 read/8 write Cycle TilHe 1.79 1.65 1.::t3

Pu\ver 8:3.:3 165.0 SG.S
7(W)xI28(D) Area 0.04G 0.027 0.022

Free List 8 read/8 ,vrite Cycle Tilne 1.95 1.28 1.05
Pu\ver :3.46 2:3.0 7.59

SO(W)x64(D) Area 0.090 0.20:3 0.151
Active List. 8 read/8 write C~yclc Time 1.:\6 1.77 1.88

P(J\vcr :\9.58 84.0 :17.28
l(i4(W)x:12(D) Area 0.088 0.205 O.1G4

Issue Queue 8 read/8 ,vrite Cycle Tilne 1.07 2.14 1.94
Pu\ver 81.1 82.2 :38.7

Specifically, we compared 3 different implementations of
the physical register file, free list, reorder buffer, and the
issue queue SRAMS.

Table I shows the dimensions of these SRAMs and also
presents the area, cycle times, and power for the three dif­
ferent implementations of these RAMs.

When compared to the Baseline designs (automatically
synthesized), the area, cycle time, and power of the Mod­
ular designs are better. The only exception is the cycle
time of the active list RAM. For this RAM, the Modular
SRAM compiler used 4 modules to build a 80(W)x64(D)
memory and the read data path becomes the critical path
for this configuration due to stacking the modules on top
of each other. This serialization degrades the critical path
compared to the Baseline synthesized design. Even though
timing is affected by this serialization, we chose this con­
figuration as it saved significant amount of area and power
compared to the baseline.

Comparing our Modular design to the equivalent Fab­
Mem design, the timing of physical register file and free
list are better than FabMem due to the depth of mem­
ory. FabMem is sensitive to the depth of memory since the
longer bit line takes more time for charging and discharging
while reading. The power of the Modular designs are com­
parable or better than FabMem. The area of FabMem is
better than the Modular designs except for free list. This
is due to the cross-over point explained in section 6-B.1.

VII. Related Work

IBM has implemented various techniques to improve the
performance and efficiency of the register files in their
POWER7 [10] and POWER8 processors [11]. To support
four writes per cycle, the POWER7 writes on both rising
and falling clock edges on two physical write ports. Ad­
ditionally, reads are grouped by thread context and use a
double-bit cell with internal muxing to support six reads
per cycle (in the vector register file). These techniques al­
low for a high number of effective read and write operations
per cycle, while keeping bit lines short to reduce switching
capacitance.

POWER8 introduced a three-level hierarchical bit line
implementation. One level of the hierarchy can potentially

~gggr;==::O:B=a=se=li=ne~=c.;...::.::..c::""",,,-,-,,,-,,-,;==-;--, 0.7,-_~-=SR",A",M..=.SM~A~L~L ~' 3~2~(W~id~th;:) ;:;;X ~8(~De~p::th::) :::::;_j
O.6~
0.5'--_.._-/' 6000

0.4t=:::_~-----f.=:;-Saseiii1e1 0.3

5000 FabMem
4000

3000t=~:::::::::::::
......... Modular

2000 0.2

1000
OL--~-~-~--~-~-~-~

0.1

o.oL-~-~---------'====:::!.I

f :~~~~l
~ 30000

~ 20000

~ 10000

o

:M' ~"'":;a I[~'? ~ I!rnl :M':::2d oo~ J 0.000~~~~±::=:::::!==t:::::::=::!:::=-~-~
f ~~~~~~I 5 150000

~ 100000

~ 50000

a
lrlw

:-~"' :':;;:?1 [E~:::?j IIII -,-~"'~
2rlw 2r2w 4r2w 4r4w Br4w Br8w 16rBw O'PrlW 2rlw 2r2w 4r2w 4r4w 8r4w Br8w 16r8w O.Ol~!='W~~2~r''''W~~2r~2W=~4~r2=W=;4r~4W==--:8JCr4~W-';'8r:':'8W-""016)r8W

Ports Ports Ports

(a) Area (b) Critical Times (c) Power

Fig. 7. Area, Cycle Times, and Power Comparision.

reduce read power by only discharging some of the regis­
ter file entries. This comes at the expense of additional
access delay. To overcome some of this additional delay,
another level of the hierarchy is used to physically shorten
the length of bit lines. The bit cells themselves are imple­
mented using an ST design. These ST cells provide separate
read and write ports.

IP vendors provide memory compilers to aid in gener­
ating custom SRAM memory arrays. However, they typ­
ically only support a limited number of ports. For ex­
ample, ARM licenses a memory compiler for a variety of
process technologies, but is limited to a maximum of two
read ports and one write port per SRAM array [1]. To
overcome the port limitations, banking and replication can
be used to trade area and power to support higher port
requirements. Banking [9] can use memories with a lower
number of ports, with logic to guide reads/writes to the
appropriate bank. Additional latency is incurred, however,
when multiple readers/writers need to access a conflicting
bank. Ports can be mimicked by replicating [5] values for a
given entry in multiple physical SRAM arrays. This tech­
nique does not suffer from bank conflicts and thus does not
increase access latency. However, replication comes at the
expense of values being held in SRAM arrays redundantly.

VIII. Summary

The findings in this paper support modular standard-cell
based memories as a robust and low-effort alternative to
fragile and high-effort full-custom memories, in the regime
of highly-ported RAMs. We presented a modular standard­
cell based memory compiler with three key features for gen­
erating competitive multi-ported SRAMs.

IX. Acknowledgement

This work is supported by NSF grant CCF-121S60S. Any
opinions, findings, and conclusions or recommendations ex­
pressed herein are those of the authors and do not neces­
sarily reflect the views of the NSF.

REFERENCES

[1] ARM Embedded Memory IP: SRAM, Register
File, and ROM Memory Compiler. Available:
https://www.arm.com/products/physical-ip/embedded­
memory-ip/index.php.

[2] A. Agarwal, B.C. Paul, et al. Process Variation in Embedded
Memories: Failure Analysis and Variation Aware Architecture.
IEEE Journal of Solid-State Circuits, 40(9):1804-1814, Septem­
ber 2005.

[3] L. Chang, D.J. Frank, et al. Practical Strategies for Power­
Efficient Computing Technologies. Proc of the IEEE, 98(2):215-
236, February 2010.

[4] Rangeen Basu Roy Chowdhury, Anil Kumar Kannepalli, Sungk­
wan Ku, and Eric Rotenberg. Anycore: A synthesizable rtl
model for exploring and fabricating adaptive superscalar cores.
In Proceedings of the ISPASS 2016 - IEEE International Sym­
posium on Performance Analysis of Systems and Software, IS­
PASS '16. IEEE Computer Society, 2016.

[5] Brandon H. Dwiel, Niket K. Choudhary, and Eric Rotenberg.
FPGA Modeling of Diverse Superscalar Processors. In ISPASS,
April 2012.

[6] Shen-Fu Hsiao and Pu-Cheng Wu. Design of Low-Leakage M ulti­
Port SRAM for Register File in Graphics Processing Unit. In
ISCAS, June 2014.

[7] Tanmay A. Shah. Fabmem: A multiported ram and cam com­
piler for superscalar design space exploration. Master's thesis,
2010.

[8] James E. Stine, Ivan Castellanos, et al. FreePDK: An Open­
Source Variation-Aware Design Kit. In MSE, pages 173-174,
June 2007.

[9] J.H. Tseng and K. Asanovic. Banked Multiported Register Files
for High-Frequency Superscalar Microprocessors. In ISCA, June
2003.

[10] D. F. Wendel, J. Barth, et al. IBM POWER7 Processor Circuit
Design. IBM Journal of Res and Dev, 55(3):6:1-6:8, May 2011.

[11] V. Zyuban, J. Friedrich, et al. IBM POWER8 Circuit Design
and Energy Optimization. IBM Journal of Research and Devel­
opment, 59(1):9:1-9:16, January 2015.

