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Abstract- Highly-ported memories are pervasive 
within superscalar processors. Accordingly, they have been 
targets for full-custom design using multi-ported versions of 
the 6T SRAM bitcell. Unfortunately, full-custom design of 
highly-ported memories is becoming exceedingly difficult 
in deep sub-micron technologies. This paper makes the 
case for implementing highly-ported memories with stan­
dard cells (flip-flops, muxes, clock buffers). In lieu of ex­
otic peripheral circuits for each port, standard-cell SRAMs 
use muxes. Consequently, area differences between full­
custom and standard-cell designs are greatly reduced at a 
high number of ports. To also compete with full-custom 
memories in terms of timing and power, we introduce a 
standard-cell memory compiler with three key features: (i) 
per-row clock gating, (ii) a new tri-state based mux stan­
dard cell, and (iii) a modular layout strategy, which is the 
centerpiece of the memory compiler. For a 16-read/8-write 
128-entry register file, our modular standard-cell memory 
consumes 13% more area and 4% more power, and is 35% 
faster, than the custom memory produced by FabMem. 
The automatic (built-in) robustness of standard cell de­
signs further weigh in their favor, contrasted with exquisite 
transistor sizing/tuning of intertwined sub-circuits in a full­
custom design. 

Keywords- Standard-Cell, RAM, Memory Compiler, 
Superscalar 

1. Introduction 

The demand for higher performance in computing has 
led to the adoption of superscalar execution in all tiers 
of computing, including mobile computing and application 
processors. As instruction fetch width and the number 
of parallel execution lanes increase, superscalar memory 
structures (e.g., physical register file, reorder buffer, sched­
uler, rename tables, etc.) require correspondingly more 
ports. Because of the importance of highly-ported mem­
ories to core area, performance, and energy consumption, 
traditionally, they have been targets for full-custom de­
sign using multi-ported versions of the 6T SRAM bitcell. 
Full-custom design of highly-ported memories is becoming 
exceedingly difficult, however. The design effort to reliably 
handle PVT variations and narrow noise margins at low 
operating voltages is challenging for deep sub-micron tech­
nology [2], [3]. This is true for single-ported 6T SRAM, and 
is even more challenging when designing an efficient and re-
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liable twelve-ported register file (eight read and four write 
ports) required for a 4-way superscalar core. Microarchi­
tectural alternatives, such as replication [5], [6] or banking 
of fewer-ported memories, have efficiency or performance 
drawbacks, respectively. 

This paper makes the case for standard-cell based 
SRAMs (flip-flops, muxes, clock buffers) as the solution 
to the problem of highly-ported deep-submicron memo­
ries. In lieu of exotic peripheral circuits for each port (bit­
line precharge, sense amps, etc.), standard-cell SRAMs use 
muxes. Consequently, we observe that the area difference 
between full-custom and standard-cell memories is greatly 
reduced at a high number of ports. To also compete with 
full-custom memories in terms of timing and power, we in­
troduce a standard-cell memory compiler with three key 
features. 

l. Per-row clock gating reduces both clock power and 
switching inside the D flip-flops. 
2. A new tri-state buffer based mux cell is added to the 
standard cell library. Employing it reduces total routing 
and further reduces switching inside the D flip-flops. The 
new mux cell presents the memory compiler with another 
choice for optimizing timing and power. 
3. A modular layout strategy reduces total routing. A lay­
out is generated for a smaller building block. A block's lay­
out is made efficient by careful floorplanning. The modular 
layout allows stacking multiple blocks in series to compose 
the overall memory. 

Our standard-cell memory compiler provides an easy in­
terface for designers to explore the characteristics of highly­
ported SRAMs, in which the full-custom memory faces 
challenges of reliability and high verification effort. The 
automatic (built-in) robustness of standard cell designs fur­
ther weigh in their favor, contrasted with exquisite tran­
sistor sizing/tuning of intertwined sub-circuits in a full­
custom design. 

We compare area, timing, and power of layouts of 
our standard-cell memories and full-custom memories gen­
erated by the FabMem highly-ported RAM/CAM com­
piler [7]. Even though FabMem is not a commercially avail­
able tool, the tool adequately evaluates the fundamental 
structures of highly optimized multi-ported bitcell, bit line 
precharge, sense amplifier, and dynamic logic decoder that 
are designed and verified by Shah [7] using the FreePDK 
45nm [8] process design kit. 
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Fig. 1. Pre-layout area and cycle time comparison of FabMem gener­
ated RAMs and synthesized flip-flop based RAMs (X read/ X write). 

II. Motivation and Contributions 

We begin by exploring the area, cycle time, and energy 
costs of adding ports in two different multi-ported SRAM 
implementation styles: full-custom (6T SRAM, scaled-up 
for multiple ports) versus fully synthesized (D flip-flop 
based). We consider a fixed size of 128 32-bit words (i.e., 
the SRAM's dimensions are 128 deep by 32 wide) and 
vary the number of ports from 2 ports (Irl w) to 24 ports 
(16r8w). 

For every port combination, FabMem uses a custom de­
signed bit cell that achieves the optimum characteristics. 
Different circuit level decisions were made for different bit­
cells in the FabMem library. FabMem uses a built-in esti­
mation tool to explore different array organization options 
for a specified SRAM size. 

Figure 1 compares area and timing of the FabMem­
generated (labeled FabMem) and synthesized (labeled FF, 
for flip-flop) designs. The graphs on the left of Figure 1 
consider X read ports and X write ports (XrXw), varying 
X. And the right graphs compare 2X read ports and X write 
ports (2XrXw). Area estimates of synthesized designs in­
clude cell area and estimated wire area from the pre-layout 
synthesis report. 

The area of the lr 1 w FabMem bit cell (8 transistors, 
two wordlines, two bitlines) is 2.544 fLm 2 , com pared to 
4.522 fLm2 for the 29-transistor D flip-flop. For lrlw, the 
total estimated area shows the synthesized design is 4.8 
times larger than the FabMem design. However, the syn­
thesized design is 1.62 times larger than FabMem for 8r8w 
and only 1.2 times larger for 16r8w. The area of the 8r8w 
FabMem bit cell (36 transistors, 16 wordlines, 16 bit lines ) is 
19.668 fLm2 . While the size of the D flip-flop is unchanged, 
more mux cells are added for each additional port. 

The FabMem bitline length increases linearly with the 
number of ports (via the wordlines), increasing read la­
tency. If we divide the bit cell array in half (along the length 
of the bit line ) and apply column muxing, read latency may 
be reduced. FabMem automatically recommends a degree 
of column muxing that minimizes read latency. As can be 
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Fig. 2. Pre-layout energy comparison of FabMem generated RAMs 
and synthesized flip-flop based RAMs (X read/X write). 

seen in the lower right graph of Figure 1, timing is greatly 
improved for FabMem 12r6w, owing to column muxing. 
In general, FabMem is faster than FF. However, a full­
custom design requires careful static noise margin (SNM) 
simulation while the synthesized flip-flop design can take 
advantage of Electronic Design Automation (EDA) tools 
for static timing analysis. 

For a fair comparison of energy consumption, we con­
verted the synthesized gate-level net list to the transistor­
level SPICE netlist, so that both the FabMem and FF de­
signs could be simulated with Synopsys HSPICE. FabMem 
generates a full SPICE net list in addition to the layout. 
Note, we reduced the memory depth to 16 instead of 128 
to reduce simulation time. The same test vectors were ap­
plied to the read and write ports of both designs over four 
clock cycles. Energy is shown in Figure 2. FabMem ac­
tually consumes more energy than FF for more than four 
ports (they break even for 2r2w). The percentage of en­
ergy consumed by precharge and sense amplifier circuits 
increases from 53.1% for lrlw to 72.5% for 8r8w. With 
more ports, the bit lines are longer and consume more en­
ergy for FabMem, whereas more energy is consumed in the 
additional mux cells for the synthesized design. 

These experiments show that for a high number of ports, 
there is an opportunity for a synthesized SRAM design 
to achieve performance and area close to that of a full­
custom SRAM, with better energy consumption. Given 
that the full-custom SRAM requires high design effort, we 
can consider building highly-ported SRAMs by leveraging 
design automation. Moreover, synthesized SRAMs have 
the advantage of being very portable. When a design is 
ported to a new process, the flip-flop based SRAMs can be 
easily re-synthesized without the need for involved physical 
design of full-custom SRAMs. The main contributions of 
this paper are as follows: 
i. We identify the important trend that for higher number 
of ports, synthesized flip-flop based SRAMs become very 
competitive to custom designed SRAMs. 
ii. We propose an automatic standard-cell based memory 
compiler using hierarchical design automation in order to 
reduce the design and verification effort of fully synthesized 
multi-ported SRAMs. 
iii. We compare area, timing, and power of layouts of our 
standard-cell memories with FabMem generated custom 
memories. 



III. Challenges for Flip-Flop Based Designs 

The challenge in synthesized flip-flop based SRAMs lies 
in creating a competitive physical layout. Placing and rout­
ing a large number of standard cells using automatic place 
and route tools results in a wide variation in area utiliza­
tion. This is due to the unpredictability of placement al­
gorithms. We found two bottlenecks when routing synthe­
sized flip-flop SRAM designs. 

First, placing flip-flops and multiplexer cells together is 
challenging. On one hand, wordline flip-flops should be 
placed as close together as possible to minimize clock skew 
and read timing. However, the group of muxes need to be 
placed in different rows to minimize spanning wires to stor­
age cells. These opposing constraints force CAD tools to 
spread flip-flops and muxes to be able to completely route 
nets lowering area utilization and increasing wire delay. 

Second, with an increase in SRAM size and port num­
bers, the design effort to route cells and insert clock 
buffers/repeaters is increased. With additional cells, the 
design effort to meet target area and timing constraints 
requires iterative optimization to tune clock buffers and 
repeaters. 

To obtain a layout of a synthesized SRAM that is com­
petitive with a custom designed SRAM in terms of power, 
timing and area, we discuss three key optimizations that 
make the design more efficient and amenable to automatic 
place and route. 

A. Clock gating 

In a synthesized flip-flop array, to retain values, the out­
put of each flip-flop is fed back to its input. To change the 
value, a mux is inserted at the input to select between the 
new value and the feedback value. A common optimiza­
tion is to eliminate the mux and feedback path and clock 
gate the word line. Our standard cell library includes a 
3.19211-m2 clock gating cell, which allows us the opportu­
nity to employ this alternative. 

B. Custom Mux Cell 

Our approach requires adding a large number of multi­
plexers to the flip-flop arrays. For each read/write data, 
there is an existing path to access each word line, which 
requires multiple stages of mux cells. Additional ports lin­
early increase the number of multiplexers, which increases 
the wire length and delay. For higher efficiency, we created 
new large input multiplexer standard cells to reduce rout­
ing congestion of complex data paths. Our custom n-to-l 
multiplexer cell uses tri-state inverters. 

For 8 write ports, an 8-to-l mux standard cell was im­
plemented to route a write data bit from 8 write ports to a 
flip-flop 'D' input. Figure 3 shows the schematic and layout 
of the new 8-to-l mux cell. Write conflicts from different 
write ports are avoided architecturally. 

For 8 read ports with 128 rows of SRAM memory, each 
read data port needs to choose a bit from the total num­
ber of rows of the SRAM memory; this would require a 
128-to-l mux. In this case, we divide the 128 rows into 8 

Fig. 3. Schematic and layout of the custom designed for 8-input mux 
cell. 

modules (i.e., each module has 16 rows of the SRAM mem­
ory) so that one 16-to-l mux cell or two 8-to-l mux cells 
can be used in each divided module. The new custom n­
to-l multiplexer cell is characterized by Encounter Library 
Characterizer verso vI3.10. 

C. Modular Design 

To further aid the CAD tools in automated placement 
and routing of a flip-flop based SRAM, we propose a struc­
tured reusable block based design. A block, called a RAM 
module, includes a flip-flop storage array and associated 
decode and muxing logic for read and write ports. Mul­
tiple of these RAM modules can then be stacked to build 
larger multi-ported SRAMs. Each read/write port selects 
a RAM module and unselected RAM modules are used 
as bypass buffers. Appropriate placement constraints are 
used to guide the CAD tools. The modularity of the de­
sign is maintained throughout the design flow to reduce 
the physical design effort by making placement and rout­
ing somewhat deterministic. This helps generate a layout 
that is more efficient in terms of area than a completely un­
constrained and unstructured synthesized SRAM design. 

Figure 4 (a) shows the block diagram of a 8r/8w RAM 
module. On the read side, the module has 8 read address 
input ports and 8 data outputs. Muxes choose between 
data from outputs of flip-flops in the same RAM module 
or from another RAM module. Common logic and wires 
can be shared within a RAM module and between RAM 
modules. One such example are the read addresses that 
are connected to other RAM modules using just repeaters. 
On the write side, 8 write address and 8 data are shared 
across RAM modules. Only the selected RAM module for 
each write port decodes the corresponding write address 
and generates a clock enable signal to update the write 
data. 

IV. Modular SRAM Compiler 

To simplify the design and analysis of flip-flop based 
SRAMs and to make them more usable, we created a "Mod­
ular SRAM Compiler". The compiler consists of three main 
tools (flows): 

• A net list generator script that generates the modular 
SRAM netlist as per the dimensions and the number of 
ports specified by the user. 



• A layout flow that creates a layout of the SRAM using a 
hierarchical layout flow and generates a G DS and LEF file 
for use with standard EDA tools. 
• A characterization and library generation flow that gen­
erates a Liberty library (LIB file) for the SRAM that can be 
used in standard ASIC flows for timing and power analysis. 

A. Netlist generator 

Given an RTL design of the SRAM, synthesis tools can 
automatically synthesize a gate-level net list for the SRAM 
and optimize it to meet a specified target frequency con­
straint. However, the exact implementation of the gate­
level net list varies from one synthesis run to the next and 
this inconsistency creates challenges for automated place 
and route of the generated gate-level netlists. Physical 
design of such net lists is extremely tedious and requires 
manual floorplanning to get the best results. To obviate 
the need for manual floorplanning and to remove inconsis­
tencies in the gate-level netlist, we created a parametrized 
net list generator in Perl to directly compose a gate-level 
net list for a reusable RAM module. Along with the netlist, 
the script also generates timing constraints for optimiza­
tion and placement constraints for deterministic routing 
to aid in automated routing of the large number of wires. 
These constraints are then used to perform post-synthesis 
optimizations of the RAM module using our synthesis tool. 
The tool inserts buffers and adjusts cell sizes to meet timing 
requirements. 

The net list generator script also generates a top-level 
wrapper net list for the required SRAM using a modu­
lar approach. The previously generated RAM module is 
treated as a black box cell and instantiated as many times 
as needed to compose the required SRAM. The top-level 
wrapper net list includes extra decoding logic to enable the 
corresponding RAM module for each read/write port. The 
final SRAM top-level wrapper net list and the associated 
constraints then feed into the hierarchical layout flow. 

B. Hierarchical Layout 

In order to maximize reuse and mlmmize SRAM gen­
eration time, we use a hierarchical layout approach. A 
reusable RAM module is placed and routed first. The 
optimized RAM module net list and associated placement 
constraints are used for this first pass. The placement con­
straints guarantee accurate placement of pins, so they line 
up perfectly when multiple RAM modules are stacked on 
top of each other to create the required SRAM dimen­
sion. This allows for the most efficient use of area in the 
final SRAM layout. The completed RAM module layout is 
then streamed into Cadence Virtuoso™and the Cadence 
Abstract ™tool to generate a LEF file. The first pass gen­
erates a post-layout netlist, and LEF and GDS files for 
the RAM module. These are used as libraries in the sec­
ond pass of the flow to layout the final SRAM. The effort 
required for the second phase is minimal as it involves plac­
ing and routing the combinational logic stitching the RAM 
modules together. Similar to the first pass, the second pass 
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Fig. 4. Example of a modular SRAM layout. 

generates a post-layout netlist, a LEF and a GDS file for 
the entire SRAM. 

Figure 4 (b) shows the initial floorplan of a 32-entry by 
32-wide SRAM with 8r8w ports using this modular-driven 
approach. The place and route tool can stack four modules 
from bottom to top and place selection decoder cells outside 
of the stacked area. The routing effort is just in wiring the 
module selection decoder cells to each module. Figure 4 
(c) shows the completed layout. We observed the total 
wire length to route modules to be greatly reduced. 

C. Library Generation 

The final process is to get a Liberty library (LIB file) for 
the generated SRAM design. We use Synopsys Prime Time 
to analyze the timing and power for the completed layout. 
In order to populate the LIB file, static timing analysis is 
run on the post place and route netlist. Parasitic informa­
tion extracted from the layout as a SPEF file is used by the 
timing analysis flow. For power analysis, gate level simula­
tion is performed on the routed net list to get the activity 
file in Value Change Dump format (VCD). Using this VCD, 
extracted SPEF, and the routed netlist, we measure power 
for read/write accesses to the SRAM. The library genera­
tor script uses these results to populate a Liberty template 
to create a final LIB file for the generated SRAM. 

V. Experimental Methodology 

In order to evaluate the effectiveness of our modular 
SRAM design, we compare to fully synthesized designs 
(baseline) and to FabMem compiled designs for various 
sizes of SRAMs. The bas~line designs use an automated 
CAD tool flow for synthesis, placement and routing under 
the tightest possible timing constraints. In the baseline de­
signs, we vary the area utilization constraint to meet the 



timing requirements and to fully route the design. 
For our design exploration, we vary the number of ports 

and SRAM sizes. The bit storage type is either flip-flop 
based or 6T bit cell (cross-coupled inverter) based. The 
mux type is a choice between static CMOS mux, tri-state 
style mux, and dynamic logic based mux. The designs we 
evaluate have LVSjDRC clean layouts. To analyze tim­
ing and power of the baseline and modular designs, we use 
Synopsys Prime Time PX TM. We use extracted para­
sitic information from the layouts (SPEF) as well as value 
change dump (VCD) from gate-level simulations for the 
Prime Time flows. To obtain timing and power for Fab­
Mem generated designs, we use extracted parasitic infor­
mation from the layouts (PEX) and run transistor-level 
SPICE simulations. 

VI. Results 

In this section, we perform a sensitivity study of our 
Modular SRAM compiler to understand the impact of the 
various optimizations and evaluate different SRAM imple­
mentation styles for various sizes and ports. We also use 
our Modular SRAM compiler in case study with a 8-way 
supersclar out-of-order processor. 

A. Sensitivity Study 

To study the impact of the various optimizations per­
formed by the Modular SRAM compiler, we perform a 
sensitivity analysis of highly-ported SRAMs, which are our 
primary regime of interest. We first study the impact of 
clock-gating and the custom mux cell. Figure 5 shows the 
area, cycle time, and power impact of introducing clock­
gating and using the new mux cell. In this case we use a 
32(W)x32(D) memory with 16r8w ports. The baseline de­
sign is an automated place-and-route design with no cus­
tom mux cells or clock-gating. The bar labeled M-1 shows 
the impact that clock-gating alone has when applied to a 
baseline SRAM. M-2 bar also uses clock-gating but addi­
tionally allows the use of the custom mux cell. Compared 
to both the baseline and to FabMem designs, clock-gating 
alone (M-1) can save area and power, but comes at the ex­
pense of an increase cycle time. The impact on timing is 
due to the clock buffer placement and routing of the clock 
tree. However, by introducing the new mux cell (M-2), 
area, cycle time, and power are all improved compared to 
both the baseline and FabMem designs. The main sources 
of improvement are in the reduced wire length and the re­
duced switching activity. 

Since a SRAM can be partitioned into modules in many 
different ways, in our second study, we study the impact 
of module granularity, i.e. the number of blocks (modules) 
in a modular SRAM. These studies do not use the custom 
mux cell but uses clock-gating. Figure 6 shows the result 
for a 32(W)x128(D) SRAM with 8r8w ports. The baseline 
does not use the modular approach. B-2, B-4, B-8, and 
B-16 refer to the number of blocks: 2, 4, 8, and 16 blocks 
respectively in a modular SRAM. Increasing the number of 
blocks improves the area of the modular design compared 
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to the baseline - approaching that of the FabMem design. 
Power is not impacted much by using more blocks, but a 
large cycle time impact is noted when using 16 blocks. This 
is due to serialization of the read paths from stacking the 
blocks on top of each other, which increases the wire length 
and hence, the critical path. 

The module granularity has an area and timing trade­
off. The clock gating has a timing and power trade-off. The 
custom mux cell shows impact on power saving. The area, 
timing, and power of a SRAM depends on a combination 
of these features. The tool explores all features to arrive 
at best solution for a given SRAM dimension. 

B. Perforamnce, Power, and Area 

B.1 Area 

Area comparisons are shown in Figure 7 (a). When com­
pared to the Baseline designs, the area of the Modular 
designs are comparable or slightly better than the Base­
line area for all sizes and ports. We observed that Mod­
ular designs can achieve even better area if we reduce the 
block size, which increases the number of stacked blocks. In 
that case, place-and-route achieves higher utilization with 
a smaller partition, and hence a higher overall utilization. 
However, the block size presents a trade-off between area 
and timing because stacking more blocks in series increases 
the critical path delay. 

When comparing our Modular design to the equivalent 
FabMem design, we find that the percent of area overhead 
of the Modular design decreases as the number of ports 
increases. Furthermore, there is a cross-over point where 
the area of the Modular design is lower than the area of 
the FabMem design. As the RAM size is increased, this 
cross-over point occurs at a higher number of ports. This 
is evident in the graph for the smallest RAM (cross-over 



at 8r4w) and medium-sized RAM (cross-over at 16r8w). 
For the largest RAM, the cross-over point is beyond the 
maximum number of ports considered, but the area gap is 
small - just 13% more area. 

B.2 Timing 

Timing comparisons are shown in Figure 7 (b). As the 
RAM size increases, the cycle time advantage of FabMem 
decreases with respect to both the Modular and the Base­
line designs. Modular designs have better timing than 
Baseline designs for most datapoints, and have significantly 
better timing for the largest RAM with 8r4w, 8r8w, and 
16r8w ports (the most complex). 

The large RAM with 8r4w, 8r8w, and 16r8w ports are 
key design points, and the Modular designs outperforms 
FabMem for these RAMs. This cross-over coincides with 
a discontinuity - the Modular design cycle time decreases 
from 4r4w to 8r4w ports. This has to do with using either 
our tri-state mux cells (for lrlw through 4r4w) or existing 
mux cells (for 8r4w, 8r8w, 16r8w), whichever is best for 
timing. For the large RAM and highest number of ports, 
the tri-state mux cell presents a trade-off between timing 
and power. The isolated "X" datapoints in the bottom 
graphs of Figure 7 (b) and Figure 7 (c) illustrate this trade­
off. These datapoints are for the large RAM with 8r4w and 
8r8w ports, using the tri-state mux cell instead of the ex­
isting mux cell. Using the tri-state mux cell reduces power 
at the expense of timing in these Modular designs. 

B.3 Power 

Power comparisons are shown in Figure 7 (c). Power in­
cludes both static and dynamic power. Modular and Base­
line designs are fairly comparable in area and timing, owing 
to their common basis in standard cells. However the Mod­
ular design optimizations clearly payoff in terms of power. 
The sources of power savings are in the gated clocks of D 
flip-flops, the tri-state data muxes, and minimized routing 
wires. 

The power of Modular designs is always better than 
FabMem designs. FabMem uses dynamic logic, including 
the address decoders and bit line precharge/sense circuitry. 
This is to be competitive in timing, but comes at the ex­
pense of power. However FabMem does become increas­
ingly competitive in power as the RAM size increases. In 
particular, FabMem and Modular designs have compara­
ble power for the large RAM, and have equal power for the 
large RAM with 16r8w ports. 

C. Case Study: 8-way superscalar processor 

To study the effectiveness of our Modular SRAM Com­
piler, we used it to generate SRAMs for an 8-way su­
perscalar out-of-order processor. The superscalar proces­
sor was generated using the AnyCore toolset [4]. Out-of­
order superscalar processor designs tend to use many highly 
multi-ported SRAMs in their pipelines. From the various 
SRAMs used by the generated design, we selected only 
the relatively large highly-ported SRAMs for this study. 

TABLE I 

HIGHLY-PORTED MEMORIES USED IN OUR 8-WAY SUPERSCALAR 

PROCESSOR. AREA IS IN SQ. MM, CYCLE TIME IS IN NS, AND POWER 

IS IN MVV. 

I IlAM Name I Dimensions I l\·IcaSllI'Clllcnt I FabMcm I Baseline I Modularl 

:12(W)x128(D) Area 0.178 0.205 0.201 
Phy. Regil:lter File 16 read/8 write Cycle TilHe 1.79 1.65 1.::t3 

Pu\ver 8:3.:3 165.0 SG.S 
7(W)xI28(D) Area 0.04G 0.027 0.022 

Free List 8 read/8 ,vrite Cycle Tilne 1.95 1.28 1.05 
Pu\ver :3.46 2:3.0 7.59 

SO(W)x64(D) Area 0.090 0.20:3 0.151 
Active List. 8 read/8 write C~yclc Time 1.:\6 1.77 1.88 

P(J\vcr :\9.58 84.0 :17.28 
l(i4(W)x:12(D) Area 0.088 0.205 O.1G4 

Issue Queue 8 read/8 ,vrite Cycle Tilne 1.07 2.14 1.94 
Pu\ver 81.1 82.2 :38.7 

Specifically, we compared 3 different implementations of 
the physical register file, free list, reorder buffer, and the 
issue queue SRAMS. 

Table I shows the dimensions of these SRAMs and also 
presents the area, cycle times, and power for the three dif­
ferent implementations of these RAMs. 

When compared to the Baseline designs (automatically 
synthesized), the area, cycle time, and power of the Mod­
ular designs are better. The only exception is the cycle 
time of the active list RAM. For this RAM, the Modular 
SRAM compiler used 4 modules to build a 80(W)x64(D) 
memory and the read data path becomes the critical path 
for this configuration due to stacking the modules on top 
of each other. This serialization degrades the critical path 
compared to the Baseline synthesized design. Even though 
timing is affected by this serialization, we chose this con­
figuration as it saved significant amount of area and power 
compared to the baseline. 

Comparing our Modular design to the equivalent Fab­
Mem design, the timing of physical register file and free 
list are better than FabMem due to the depth of mem­
ory. FabMem is sensitive to the depth of memory since the 
longer bit line takes more time for charging and discharging 
while reading. The power of the Modular designs are com­
parable or better than FabMem. The area of FabMem is 
better than the Modular designs except for free list. This 
is due to the cross-over point explained in section 6-B.1. 

VII. Related Work 

IBM has implemented various techniques to improve the 
performance and efficiency of the register files in their 
POWER7 [10] and POWER8 processors [11]. To support 
four writes per cycle, the POWER7 writes on both rising 
and falling clock edges on two physical write ports. Ad­
ditionally, reads are grouped by thread context and use a 
double-bit cell with internal muxing to support six reads 
per cycle (in the vector register file). These techniques al­
low for a high number of effective read and write operations 
per cycle, while keeping bit lines short to reduce switching 
capacitance. 

POWER8 introduced a three-level hierarchical bit line 
implementation. One level of the hierarchy can potentially 
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Fig. 7. Area, Cycle Times, and Power Comparision. 

reduce read power by only discharging some of the regis­
ter file entries. This comes at the expense of additional 
access delay. To overcome some of this additional delay, 
another level of the hierarchy is used to physically shorten 
the length of bit lines. The bit cells themselves are imple­
mented using an ST design. These ST cells provide separate 
read and write ports. 

IP vendors provide memory compilers to aid in gener­
ating custom SRAM memory arrays. However, they typ­
ically only support a limited number of ports. For ex­
ample, ARM licenses a memory compiler for a variety of 
process technologies, but is limited to a maximum of two 
read ports and one write port per SRAM array [1]. To 
overcome the port limitations, banking and replication can 
be used to trade area and power to support higher port 
requirements. Banking [9] can use memories with a lower 
number of ports, with logic to guide reads/writes to the 
appropriate bank. Additional latency is incurred, however, 
when multiple readers/writers need to access a conflicting 
bank. Ports can be mimicked by replicating [5] values for a 
given entry in multiple physical SRAM arrays. This tech­
nique does not suffer from bank conflicts and thus does not 
increase access latency. However, replication comes at the 
expense of values being held in SRAM arrays redundantly. 

VIII. Summary 

The findings in this paper support modular standard-cell 
based memories as a robust and low-effort alternative to 
fragile and high-effort full-custom memories, in the regime 
of highly-ported RAMs. We presented a modular standard­
cell based memory compiler with three key features for gen­
erating competitive multi-ported SRAMs. 
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