
Virtualizing GPUs for CUDA based HPC applications

Rangeen Basu, Siddharth Sharma

Abstract
Modern graphics processing units (GPUs) are being widely
adopted as application accelerators in HPC owing to their
massive floating point compute power that can be leveraged
by data parallel algorithms. Consequently, need for virtual-
ization of GPU resources has grown rapidly to provide on-
demand efficient resource sharing. In this work, we present
a detailed literature review of various GPU virtualization
techniques. We then provide design details of a virtualiza-
tion technique for CUDA applications, that we developed,
based on API interception and redirection via Remote pro-
cedure calls. We demonstrate the viability of our virtualiza-
tion framework by testing the performance on CUDA SDK
examples and a set of micro-benchmarks.

Keywords
GPU Virtualization, CUDA, Call forwarding

1. INTRODUCTION
The rapid growth in virtualization technologies has re-

sulted in a paradigm shift in computing trends towards on-
demand computing, cloud computing and Software as a Ser-
vice models. Smaller institutions lease compute resources
from cloud vendors like Microsoft, Amazon and Google which
in turn use virtualization to enable efficient resource sharing
among different applications/users in order to maintain high
overall system utilization.

The Graphics Processing Units (GPU) have played an
essential role in providing rich visual experiences to users
through graphics and physics acceleration. GPUs are needed
to support graphics intensive applications like games, CAD
tools and visualization software. Each of these are now be-
ing deployed onto the cloud as part of Software as a Service
thus requiring GPU compute in cloud and making GPU vir-
tualization an important technology.

More recently, GPUs have also been used to accelerate a
wide range of applications beyond graphics such as bioin-
formatics, physics and chemistry, business forecasting and
medical imaging applications [5], [8]. Programmers gen-
erally exploit GPUs by offloading compute intensive paral-
lelizable parts of the application onto these devices. Newly
developed programming models like CUDA and OpenCl pro-
vide libraries and programming framework (including device
code compilers) to directly interact with the device making
them easily accessible to the programmer. Widespread use
of GPUs for general compute has resulted into further in-
crease in demand for GPU compute capability in virtualized
platforms offered by cloud vendors.

Due to multifold benefits in terms of performance and
power savings GPUs are also being deployed in datacenters
[11]. GPUs are being used to tackle big data analytics and
advanced search for both consumer and commercial appli-
cations. Companies such as Shazam, Salesforce.com and
Cortexica use GPUs to process massive data sets and com-
plex algorithms for audio search, big data analytics and im-
age recognition [10]. Since a configuration that dedicates

one GPU per node on an HPC server cluster may not be
able to fully utilize the device, GPU nodes are generally
shared among multiple CPU nodes. Configurations with
lesser number of GPUs require some sort of global scheduler
and task manager to deploy work onto GPUs. This may be
handled by decoupling execution hardware from the software
via virtualization making GPU virtualization a very impor-
tant building block of an efficient GPU compute server.

The focus of our work is on exploring GPU virtualization
techniques for HPC clusters. As most GPU based HPC ap-
plications use CUDA framework [6] we further limit our
discussion and implementation to virtualizing GPU work-
loads that use CUDA. In the next section, we discuss two
middleware techniques that virtualize GPUs for CUDA ap-
plications , namely, rCUDA [2] and gVirtuS [3]. We also
discuss PCI PassThrough technique which is commonly of-
fered by Citrix Xen [12] and VMwares vSphere [9]. Sec-
tion 3 describes the implementation of our GPU virtualiza-
tion solution which is motivated by vCUDA [7]. Section 4
presents results and evaluations. We provide conclusions in
section 5 and future work in section 6.

2. GPU VIRTUALIZATION
Despite high demand, GPU virtualization technology is

still in its nascent stage. GPU architecture traditionally
provided limited support for virtualization and GPU ven-
dors remain highly secretive of their proprietary architec-
ture leaving limited room for development of sophisticated
virtualization techniques.

Currently available GPU virtualization techniques can be
classified into two groups [1] - Front end and Back end
techniques. Rest of the section describes these techniques
with examples.

2.1 Back End Techniques
Backend virtualization techniques are built around device-

dedication logic in which driver stack remains on the guest
OS and the guest has direct exclusive control over the GPU
device. A common example of this technique is PCI Passthrough
provided by Xen and vSphere to allow GPU rendering ca-
pability for virtual desktops. PCI pass through techniques
utilize IOMMU support provided by Intel VT-d [4] to ded-
icate GPU devices to guest machines. Since guest VM has
complete control over the device, this techniques does not
allow device sharing and multiplexing.

2.2 Front-end techniques
This class of virtualization technique is also known as

middle-ware technique since it has a middle-ware sitting be-
tween guest application and host/VMM managing commu-
nication related to the GPU device. GPU device driver is
located on the VMM or host OS and VMs access the GPU
by remote call forwarding or device emulation. This class of
virtualization supports multiplexing and sharing of device
among multiple VMs.

2.2.0.1 rCUDA.

1

rCUDA [2] virtualizes and manages load on multi-gpus
installed on a cluster and provides remote use of CUDA run-
time APIs. The framework is based on a client server ar-
chitecture consisting of client and server side middlewares.
Client middle-ware constitutes a wrapper library that encap-
sulates the original CUDA runtime. The wrapper functions
implement remote call forwarding functionality for each run-
time function in the CUDA library. The functions forwarded
by client rCuda wrapper are handled by server middle-ware.
The server middle-ware consists of a set of worker threads
each controlling one GPU device and a variable number of
client service threads which listen to TCP ports for client
side requests and services them. GPU sharing is accom-
plished by spawning different server process for each remote
execution over a new GPU context. GPU virtualization is
thus provided via API remoting.

2.2.0.2 gVirtuS.
The GPU virtualization service (gVirtuS) [3] is also based

on API call forwarding with client middle-ware acting as
call interceptor and server middle-ware servicing client side
GPU runtime library calls. gVirtuS, however, is designed to
accommodate a pluggable communication component which
is independent of the server or client middleware allowing it
to use efficient communicators if available to reduce remote
call forwarding overheads.

In the next section we describe our implementation of a
front-end virtualization technique via call forwarding which
is essentially a variant of vCUDA. We start by providing an
over-view of vCUDA virtualization technique and describe
our implementation in later subsections.

3. IMPLEMENTATION DETAILS

3.1 General overview
The VCUDA system has a client server architecture that

virtualizes the CUDA run time API. The client, which re-
sides in the guest VM, intercepts the CUDA API and redi-
rects them to the server. The VCUDA server, that is part
of the VMM (host), manages the physical GPU device and
also ensures resource sharing between multiple clients. For
successful remote execution of CUDA programs, certain or-
dering semantics need to be strictly followed. CUDA has
a strictly ordered execution model and does not guarantee
data integrity if ordering is violated. Also, the VCUDA sys-
tem needs to keep track of certain states and proper map-
ping of these states from client to server is necessary. These
are tracked in special map tables by both the client and the
server.

3.2 Client library
The client side consists of a custom shared library and

a XMLRPC client stack. The library replaces the regular
CUDA runtime library (libcudart.so) on the guest system.
This library implements the CUDA runtime API and redi-
rects the calls and data to the GPU server using appropriate
remote function calls. The XMLRPC client stack enables re-
mote function calls and provides XML encoding and XML-
RPC protocol. On program start, the client sends a connect
request to the master server and if the connection is success-
ful, it receives the port number for a specific server instance
(described below). Rest of the program is executed using
this server instance. On program exit, the client sends a

������������	
����
	�������������	����������	��������������	�������	����� �����	������	
�� �� ����	��� ���������	�������	�������	!"���# ����	�������	���$��%��&	
���& ������	
�� ��$��%��&	
���& �����	
�� �	
�� ��	������	
�� ��$��%��&	
���&�������	��$	��	����������	$�� ������	������� ����
	�������
Figure 1: VCUDA virtualization architecture

disconnect request which also ends the corresponding server
instance.

3.3 Vcuda Server
The server has two main components, the XMLRPC server

stack and the VCUDA server API implementation. The
XMLRPC stack includes the web server and also the RPC
handlers. These are responsible for communicating with
the client using the XMLRPC protocol, XML decoding and
passing on the arguments to the appropriate function. The
RPCs, implemented in the VCUDA server, translate to ap-
propriate CUDA runtime API calls. The CUDA run time
library interfaces with the CUDA driver which manages ex-
ecution on the GPU.

3.4 Multiplexing Guests
One important aspect of virtualization is resource shar-

ing between multiple guest VMs. VCUDA enables sharing
of a single physical GPU among multiple VMs. It achieves
this by using different execution contexts for different clients
in the CUDA driver. CUDA driver is capable of managing
multiple contexts and efficiently switching between them, al-
though preemption is not possible with current GPU tech-
nology. Multiple CUDA programs, that run as indepen-
dent processes, can share the GPU resources. In our current
implementation Figure 1, VCUDA server exploits this by
spawning multiple server instances for each client. Each in-
stance is a separate process and hence has a separate CUDA
context. When the Master VCUDA instance receives a con-
nect request from a new client, it spawns a child process that
listens on a new TCP port, and sends back the port number
to the client. Thereafter, the client only communicates with
the new VCUDA instance at the new TCP port. A server
process ends when the client sends a disconnect request. The
CUDA driver efficiently multiplexes work from all contexts,
blocking them when GPU resources are busy. This is not
the best implementation and a multi-threaded implementa-
tion of the server Figure 2 will have better overlapping of
tasks from multiple clients as opposed to the multi-process
implementation, although not without added complexity. In
case of the multi-threaded server, a dispatcher thread pushes
work into the input queues and the scheduler thread is re-
sponsible for maintaining ordering and atomicity (certain
API sequences). Since the entire server is a single process,

2

�����������	��
��
���������������������
� ����������
������������������ �
!��"��
��" #��"���$����%#��"�����%�
������������
��&�����'���%�������%��
�(���
)�'*��+����'*��+����'*��+����,*��+���������
�����$����%���((���-��
���!�
���
���
���%�.�����������.���
�� 	�����������
Figure 2: Enhanced Server side middleware archi-
tecture

and there is only one worker thread, everything runs in a
single CUDA context and API calls from different clients
are not blocked except in cases when an atomic API se-
quence is being run. For example, calls like cudaMalloc()
from different clients can be overlapped whereas, a kernel
launch sequence (cudaConfigureCall, cudaSetupArgument,
cudaLaunch) must be atomic.

4. EXPERIMENTS AND DISCUSSIONS
Our vCuda implementation that forwards GPU related

calls to a remote server may incur three types of overheads :
RPC data-packing/unpacking overhead, network overhead,
VM switching overhead for multiclient case. We perform
xml-rpc call forwarding via base64 encoding byte stream
data. This data exchange between server and client in-
volves numerous procedure calls that perform data pack-
ing/unpacking, server-client handshakes and process of plac-
ing and reading data from TCP buffer. We call it RPC-
overhead. VM-switching overhead arises when multiple VMs
are accessing the GPU via vCUDA server. This is a standard
virtualization overhead due to necessary context switches
between VMs. The third class of overhead comes from net-
work through which we exchange RPC data. The effect of
this overhead as well as the RPC overhead highly depends
on the amount of data being exchanged between client and
server which can be approximated by the amount of data
exchanged between GPU and the host for a given applica-
tion.

4.1 Hardware Configuration
The platform used for hosting GPU machine and the server

middle-ware consists of a system with one quad-core 2.27
GHz intel Xeon processor hosting a Fermi C2075 GPU. The

14

15

16

17

T
im

e
 i

n
 s

e
c

Execution time of microbenchmark VM_mat2

10

11

12

13

14

Native exec Bare-metal Client VM client

T
im

e
 i

n
 s

e
c

Axis Title

Figure 3: Single Client virtualization performance

system is running RHEL 5.5 with Nvidia driver 304.54 and
CUDA toolkit 4.1. Remote procedure calls are implemented
using xmlrpc-c library. [13] [14]. For client side we cre-
ate multiple VMs running Ubuntu ontop of the host system
with single core CPU capability.

4.2 Microbenchmarks
Vitalizing GPU not only provides GPU capability to re-

mote guest systems but also allows efficient resource usage
via context multiplexing. GPU can be most effectively and
beneficially shared between multiple clients when they are
running Heterogeneous HPC applications. This is because
heterogeneous applications are characterized by the pres-
ence of sequential sections of GPU and CPU compute that
often form a loop. Hence CPU compute of one client can
effectively overlap on to GPU compute of some other allow-
ing high overall compute throughput. Thus in order to test
effective multiplexing capabilities of our virtualization tech-
nique we design a micro-benchmark application(VM MAT2)
that imitates heterogeneous application behavior with mul-
tiple sections of alternating GPU and CPU compute. We
also create benchmark kernel with minimal GPU compute
on large data-transfer that is transferred to and from the
GPU device memory (VM MAT1). This allows us to effec-
tively characterize RPC-overhead and network latency over-
heads.

4.3 Single client remote execution
Fig 3 illustrates runtimes of native GPU execution (no

virtualization) against three client side configurations. They
are as follows:

• Bare-Metal Client (BMC) - In this configuration client
program is running on the same host system and ef-
fectively only utilizes the client wrapper libraries in-
stead of the actual CUDA libraries to access the GPU
via server middleware. This configuration suffers from
no VM-switch overhead and minimal network latency
overhead allowing us to clearly identify RPC call over-
heads.

• Virtual machine client (VMC) - For this configura-
tion, we create virtual machines on the same host sys-
tem thus only adding VM switching overhead.

• Remote client RC - This configuration allows com-
pletely remote access to GPU with client sitting some-
where far away in the network allowing us to take net-
work latencies linked with data transfer into account.
Due to limited time and scarce real-world application

3

10

12

14

16

18

T
im

e
 i

n
 s

e
c

Variation in XMLRPC overhead

0

2

4

6

8

10

VM_Mat2 2D_convol VM_Mat1 binOption

T
im

e
 i

n
 s

e
c

GPU application

Native

BMC

Figure 4: Virtualization performance on different
apps showing RPC overhead

of this case (since HPC applications would most likely
be running on VMs sitting close to host system and
not on remotely placed thin client) we do not collect
data for it.

The X-axis of fig 3 denotes different client configura-
tions running our microbenchmark and Y-axis denotes exe-
cution time. We see about 2.6% RPC-overhead and about
3% VM switching overhead. While VM-switch overhead re-
mains almost consistent RPC overhead vary with different
applications. This can be seen in Fig 4 which compares
native and BMC run-times of 3 more benchmarks includ-
ing micro-benchmark VM mat and two CUDA SDK bench-
marks namely, 2d-Convolution and binomial Option sorting.
The experiments showed xml overheads to vary from less
than 1% to about 15%. It is worth mentioning that as we
do not port all cuda runtime library functions, some func-
tionalities of CUDA SDK applications are not supported.
Binomial Option sorting originally uses constant memories
which we change to standard device memory variables to
allow this app to use our virtualization framework. Writing
wrappers for all functions of CUDA runtime library is part
of future work.

4.4 Multi client remote execution
We tested configurations where multiple clients simultane-

ously issue GPU compute library calls. As we spawn mul-
tiple server processes to allow effective driver level multi-
plexing, multiple GPU contexts are formed each queuing
their GPU calls onto a single driver managed execution
queue. The decision to spawn separate processes for each
client allows us to effectively utilize well established context
switching capabilities on GPU drivers. The Fig 5 compares
time taken to complete simultaneous client runs of 2 BMC
and VMC clients running VM MAT2 benchmark against the
time taken by two sequential runs of VM MAT2 on native
machine. The large time savings illustrates benefits obtained
from effective multiplexing of GPU compute on one client
with CPU compute on the other.

5. CONCLUSIONS
We proposed and implemented a framework for virtual-

izing GPU in a virtual machine environment. This is ex-
tremely useful for GPGPU applications hosted on clouds.
This enables effective use of hardware resources and cost ad-
vantage for the data center operation. We presented a few
examples of similar implementations and explained our im-
plementation in detail. Our current implementation trans-

20

25

30

35

T
im

e
 i

n
 s

e
c
o

n
d

s

Multi-client run VM_MAT2 – multiplexing benefits

0

5

10

15

20

Sequential native 2 Bare metal Client 2 VM client

T
im

e
 i

n
 s

e
c
o

n
d

s

Client type

Figure 5: Multiple clients issueing GPU compute
calls simultaneously

parently enables remote execution of CUDA programs with-
out changing the programmer’s view or tool flow. Results
obtained from experiments using micro- benchmarks show
very little overhead in a virtualized environment. This in-
frastructure is also capable of handling remote execution
on GPU clusters (Network attached GPUs) and with slight
modification, will be capable of providing GPGPU as a ser-
vice on the cloud.

6. FUTURE WORK
Future work on this can involve supporting other high

bandwidth and lower latency transport mechanisms such as
RDMA. Implementing the entire CUDA runtime API is also
very important to support a broad spectrum of CUDA ap-
plications. Another very important enhancement could be
implementing multi-GPU support and introduction of fault
tolerance. New GPU architectures (eg. Kepler) supports
simultaneous execution of multiple kernels and VCUDA can
take advantage of such technology with some modifications.

7. REFERENCES

[1] M. Dowty and J. Sugerman. Gpu virtualization on
vmware’s hosted i/o architecture. ACM SIGOPS
Operating Systems Review, 43(3):73–82, 2009.

[2] J. Duato, A. J. Pena, F. Silla, R. Mayo, and
E. Quintana-Orti. rcuda: Reducing the number of
gpu-based accelerators in high performance clusters.
In High Performance Computing and Simulation
(HPCS), 2010 International Conference on, pages
224–231. IEEE, 2010.

[3] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A
gpgpu transparent virtualization component for high
performance computing clouds. In Euro-Par
2010-Parallel Processing, pages 379–391. Springer,
2010.

[4] R. Hiremane. Intel virtualization technology for
directed i/o (intel vt-d). Technology@ Intel Magazine,
4(10), 2007.

[5] J. Nickolls and W. J. Dally. The gpu computing era.
Micro, IEEE, 30(2):56–69, 2010.

[6] C. Nvidia. Nvidia cuda programming guide, 2011.

[7] L. Shi, H. Chen, J. Sun, and K. Li. vcuda:
Gpu-accelerated high-performance computing in
virtual machines. Computers, IEEE Transactions on,
61(6):804–816, 2012.

4

[8] G. M. Striemer and A. Akoglu. Sequence alignment
with gpu: Performance and design challenges. In
Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–10. IEEE,
2009.

[9] Web. Gpu computing in a vm,
http://blogs.vmware.com/performance/2011/10/gpgpu-
computing-in-a-vm.html,
2011.

[10] Web.
http://www.datacenterknowledge.com/archives/2013/03/22/nvidia
-conference-gpu-can-power-big-data-analytics, 2011.

[11] Web. Top 500 super computer sites webpage,
http://www.top500.org, 2011.

[12] Web. Xen pci-passthrough,
http://wiki.xen.org/wiki/xen pci passthrough, 2011.

[13] Web. Xml-rpc-c documentation,
http://xmlrpc-c.sourceforge.net/doc/, 2011.

[14] Web. Xml-rpc source code,
http://sourceforge.net/projects/xmlrpc-c/, 2011.

5

